首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An organism's ability to respond to changes in oxygen tension depends in large part on alterations in gene expression. The oxygen sensing and signaling mechanisms in eukaryotic cells are not fully understood. To further define these processes, we have studied the Delta9 fatty acid desaturase gene OLE1 in Saccharomyces cerevisiae. We have confirmed previous data showing that the expression of OLE1 mRNA is increased in hypoxia and in the presence of certain transition metals. OLE1 expression was also increased in the presence of the iron chelator 1,10-phenanthroline. A 142-base pair (bp) region 3' to the previously identified fatty acid response element was identified as critical for the induction of OLE1 in response to these stimuli using OLE1 promoter-lacZ reporter constructs. Electromobility shift assays confirmed the presence of an inducible band shift in response to hypoxia and cobalt. Mutational analysis defined the nonameric sequence ACTCAACAA as necessary for transactivation. A 20-base pair oligonucleotide containing this nonamer confers up-regulation by hypoxia and inhibition by unsaturated fatty acids when placed upstream of a heterologous promoter in a lacZ reporter construct. Additional yeast genes were identified which respond to hypoxia and cobalt in a manner similar to OLE1. A number of mammalian genes are also up-regulated by hypoxia, cobalt, nickel, and iron chelators. Hence, the identification of a family of yeast genes regulated in a similar manner has implications for understanding oxygen sensing and signaling in eukaryotes.  相似文献   

3.
Oxygen is required for effective production of ATP and plays a key role in the maintenance of life for all organisms, excepting strict anaerobes. The ability of aerobic organisms to sense and respond to changes in oxygen level is a basic requirement for their survival. Eukaryotes have developed adaptive mechanisms to sense and respond to decreased oxygen concentrations (hypoxia) through adjustment of oxygen homeostasis by upregulating hypoxic and downregulating aerobic nuclear genes. This review summarizes recent data on mechanisms of cells sensing and responding to changes in oxygen availability in mammals and in yeasts. In the first part of the review, prominence is given to functional regulation and stabilization of hypoxia-inducible factors (HIFs), HIF-mediated regulation of electron transport flux and repression of lipogenesis, as well as to hypoxia-induced mitochondrial permeability transition (pore) opening, cell death, and autophagy. In the second part of the review emphasis is placed on oxygen sensing in nonpathogenic yeasts by heme, unsaturated fatty acids, and sterols, as well as on responses to hypoxia in fungal pathogens.  相似文献   

4.
Oxygen sensing in the body   总被引:8,自引:0,他引:8  
  相似文献   

5.
Carotid bodies are sensory organs that detect changes in arterial blood oxygen, and the ensuing reflexes are critical for maintaining homeostasis during hypoxemia. During the past decade, tremendous progress has been made toward understanding the cellular mechanisms underlying oxygen sensing at the carotid body. The purpose of this minireview is to highlight some recent concepts on sensory transduction and transmission at the carotid body. A bulk of evidence suggests that glomus (type I) cells are the initial site of transduction and that they release transmitters in response to hypoxia, which causes depolarization of nearby afferent nerve endings, leading to an increase in sensory discharge. There are two main hypotheses to explain the transduction process that triggers transmitter release. One hypothesis assumes that a biochemical event associated with a heme protein triggers the transduction cascade. The other hypothesis suggests that a K(+) channel protein is the oxygen sensor and that inhibition of this channel by hypoxia leading to depolarization is a seminal event in transduction. Although there is body of evidence supporting and questioning each of these, this review will try to point out that the truth lies somewhere in an interrelation between the two. Several transmitters have been identified in glomus cells, and they are released in response to hypoxia. However, their precise roles in sensory transmission remain uncertain. It is hoped that future studies involving transgenic animals with targeted disruption of genes encoding transmitters and their receptors may resolve some of the key issues surrounding the sensory transmission at the carotid body. Further studies are necessary to identify whether a single sensor or multiple oxygen sensors are needed for the transduction process.  相似文献   

6.
NOX4 as an oxygen sensor to regulate TASK-1 activity   总被引:1,自引:0,他引:1  
Lee YM  Kim BJ  Chun YS  So I  Choi H  Kim MS  Park JW 《Cellular signalling》2006,18(4):499-507
When oxygen sensing cells are excited by hypoxia, background K+ currents are inhibited. TASK-1, which is commonly expressed in oxygen sensing cells and makes a background K+ current, is inactivated by hypoxia. Thus TASK-1 is a candidate molecule responsible for hypoxic excitation. However, TASK-1 per se cannot sense oxygen and may require a regulatory protein that can. In the present study, we propose that the NADPH oxidase NOX4 functions as an oxygen-sensing partner and that it modulates the oxygen sensitivity of TASK-1. Confocal imaging revealed the co-localization of TASK-1 and NOX4 in the plasma membrane. In HEK293 cells expressing NOX4 endogenously, the activity of expressed TASK-1 was moderately inhibited by hypoxia, and this oxygen response was significantly augmented by NOX4. Moreover, the oxygen sensitivity of TASK-1 was abolished by NOX4 siRNA and NADPH oxidase inhibitors. These results suggest a novel function for NOX4 in the oxygen-dependent regulation of TASK-1 activity.  相似文献   

7.
8.
Reactive oxygen species and cellular oxygen sensing   总被引:1,自引:0,他引:1  
  相似文献   

9.
Acute hypoxia causes pulmonary vasoconstriction and coronary vasodilation. The divergent effects of hypoxia on pulmonary and coronary vascular smooth muscle cells suggest that the mechanisms involved in oxygen sensing and downstream effectors are different in these two types of cells. Since production of reactive oxygen species (ROS) is regulated by oxygen tension, ROS have been hypothesized to be a signaling mechanism in hypoxia-induced pulmonary vasoconstriction and vascular remodeling. Furthermore, an increased ROS production is also implicated in arteriosclerosis. In this study, we determined and compared the effects of hypoxia on ROS levels in human pulmonary arterial smooth muscle cells (PASMC) and coronary arterial smooth muscle cells (CASMC). Our results indicated that acute exposure to hypoxia (Po(2) = 25-30 mmHg for 5-10 min) significantly and rapidly decreased ROS levels in both PASMC and CASMC. However, chronic exposure to hypoxia (Po(2) = 30 mmHg for 48 h) markedly increased ROS levels in PASMC, but decreased ROS production in CASMC. Furthermore, chronic treatment with endothelin-1, a potent vasoconstrictor and mitogen, caused a significant increase in ROS production in both PASMC and CASMC. The inhibitory effect of acute hypoxia on ROS production in PASMC was also accelerated in cells chronically treated with endothelin-1. While the decreased ROS in PASMC and CASMC after acute exposure to hypoxia may reflect the lower level of oxygen substrate available for ROS production, the increased ROS production in PASMC during chronic hypoxia may reflect a pathophysiological response unique to the pulmonary vasculature that contributes to the development of pulmonary vascular remodeling in patients with hypoxia-associated pulmonary hypertension.  相似文献   

10.
11.
12.
13.
14.
Mammalian cells require a constant supply of oxygen in order to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. Sophisticated mechanisms have therefore evolved which allow cells to respond and adapt to hypoxia. Specialized oxygen-sensing cells have the ability to detect changes in oxygen tension and transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in a wide variety of different organisms. An increase in intracellular calcium levels is a primary response of many cell types to hypoxia/ischemia. The response to hypoxia is complex and involves the regulation of multiple signaling pathways and coordinated expression of perhaps hundreds of genes. This review discusses the role of calcium in hypoxia-induced regulation of signal transduction pathways and gene expression. An understanding of the molecular events initiated by changes in intracellular calcium will lead to the development of therapeutic approaches toward the treatment of hypoxic/ischemic diseases and tumors.  相似文献   

15.
《BBA》2022,1863(8):148911
Acclimation to acute hypoxia through cardiorespiratory responses is mediated by specialized cells in the carotid body and pulmonary vasculature to optimize systemic arterial oxygenation and thus oxygen supply to the tissues. Acute oxygen sensing by these cells triggers hyperventilation and hypoxic pulmonary vasoconstriction which limits pulmonary blood flow through areas of low alveolar oxygen content. Oxygen sensing of acute hypoxia by specialized cells thus is a fundamental pre-requisite for aerobic life and maintains systemic oxygen supply. However, the primary oxygen sensing mechanism and the question of a common mechanism in different specialized oxygen sensing cells remains unresolved. Recent studies unraveled basic oxygen sensing mechanisms involving the mitochondrial cytochrome c oxidase subunit 4 isoform 2 that is essential for the hypoxia-induced release of mitochondrial reactive oxygen species and subsequent acute hypoxic responses in both, the carotid body and pulmonary vasculature. This review compares basic mitochondrial oxygen sensing mechanisms in the pulmonary vasculature and the carotid body.  相似文献   

16.
AIMS AND SCOPE: All aerobic organisms require molecular di-oxygen (O2) for efficient production of ATP though oxidative phosphorylation. Cellular depletion of oxygen results in rapid molecular and physiological acclimation. The purpose of this review is to consider the processes of low oxygen sensing and response in diverse organisms, with special consideration of plant cells. CONCLUSIONS: The sensing of oxygen deprivation in bacteria, fungi, metazoa and plants involves multiple sensors and signal transduction pathways. Cellular responses result in a reprogramming of gene expression and metabolic processes that enhance transient survival and can enable long-term tolerance to sub-optimal oxygen levels. The mechanism of sensing can involve molecules that directly bind or react with oxygen (direct sensing), or recognition of altered cellular homeostasis (indirect sensing). The growing knowledge of the activation of genes in response to oxygen deprivation has provided additional information on the response and acclimation processes. Conservation of calcium fluxes and reactive oxygen species as second messengers in signal transduction pathways in metazoa and plants may reflect the elemental importance of rapid sensing of cellular restriction in oxygen by aerobic organisms.  相似文献   

17.
18.
人体肝癌细胞急性低氧及低氧习服差异表达基因分析   总被引:9,自引:0,他引:9  
Wang JH  Shan YJ  Cong YW  Wu LJ  Yuan XL  Zhao ZH  Wang SQ  Chen JP 《生理学报》2003,55(3):324-330
本文分析了人体肝癌细胞(HepG2)急性低氧处理以及低氧习服处理后基因表达谱的改变。急性低氧处理为细胞在1%氧气中培养48h,低氧习服处理为细胞在1%氧气中培养24h,常氧培养24h,以此作为一个周期,重复6个周期。联合应用抑制消减杂交技术和cDNA芯片技术,筛选HepG2细胞经急性低氧处理与正常培养细胞相比差异表达的基因,以及经低氧习服处理细胞与正常培养细胞相比差异表达的基因。结果显示,HepG2细胞经急性低氧处理与在常氧条件下培养相比,差异表达的基因有37个,表达水平全部表现为下调,其中包括参与细胞周期、细胞应激、细胞信号转导、细胞骨架形成、转录相关蛋白及细胞代谢相关蛋白的基因,1个未知基因序列、4个EST序列、5个线粒体蛋白基因,另外有功能不明的蛋白质基因12个。低氧习服处理的细胞与常氧条件下培养的细胞相比,差异表达的基因有6个,其中包括两个线粒体蛋白基因、金属蛋白酶1基因、转铁蛋白基因、Thymosin .beta-4和TPT1基因。其中线粒体蛋白ND4、转铁蛋白、Thymosin.beta-4和TPT1基因的表达呈上调,线粒体NDl及金属蛋白酶1基因的表达水平呈下调。经低氧习服处理后,细胞低氧耐受力提高,低氧习服处理细胞基因的表达与急性低氧处理细胞和正常培养细胞的基因表达不同,这种变化可能与低氧习服细胞低氧耐受力的增强有关。  相似文献   

19.
20.
HIF1 (hypoxia-inducible factor 1α) is considered a central oxygen-threshold sensor in mammalian cells. In the presence of oxygen, HIF1 is marked by prolyl hydroxylases (PHDs) at the oxygen-dependent degradation (ODD) domain for ubiquitination followed by rapid proteasomal degradation. However, the actual mechanisms of oxygen sensing by HIF1 are still controversial. Thus, HIF1 expression correlates poorly with tissue oxygen levels, and PHDs are themselves target genes of HIF1 considered to readjust to new oxygen thresholds. In contrast to hypoxia chambers, we here establish an enzymatic model that allows both the rapid induction of stable hypoxia and independent control of H2O2. Rapid enzymatic hypoxia only transiently induced HIF1 in various cell types and the HIF1 was completely degraded within 8–12 h despite sustained hypoxia. HIF1 degradation under sustained hypoxia could be blocked by a competitive ODD–GFP construct and PHD siRNA, but also by cobalt chloride and micromolar H2O2 levels. Concomitant induction of PHDs further confirmed their role in degrading HIF1 under enzymatic hypoxia. The rapid and complete degradation of HIF1 under enzymatic hypoxia suggests that, in addition to hypoxia sensing, the HIF1/PHD loop may rather compensate for fluctuations of tissue oxygen staying tuned to other, e.g., metabolic, signals. In addition to hypoxia chambers, enzymatic hypoxia provides a valuable tool for independently studying the regulatory functions of hypoxia and oxidative stress in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号