首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The marine nitrogen-fixing cyanobacterium Oscillatoria limosa, strain 23 (Oldenburg) was investigated with respect to its dark anaerobic metabolism. As soon as the cells were incubated anaerobically in the dark, they started to ferment. Glycogen was presumably degraded via the heterolactic fermentative pathway. Glycogen-glucose was degraded to equimolar amounts of lactate, ethanol and carbon dioxide. The disaccharide trehalose, which serves as an osmoprotectant in O. limosa, was also catabolized. Most probably, this compound was fermented almost exclusively to acetate. Some hydrogen was produced as well. In the presence of elemental sulfur, fermentative hydrogen production ceased and sulfide was produced instead. The presence of elemental sulfur had no effect on the amounts and ratios of the fermentation products produced.  相似文献   

2.
The coupling of growth of the o-demethylating bacterium, Clostridium methoxybenzovorans SR3, with a nitrate-reducing bacterium able to degrade aromatic compounds, Thauera sp. Cin3,4, allowed complete mineralization of poorly oxidizable methoxylated aromatic compounds such as vanillate, isovanillate, vanilline, anisate, ferulate and veratrate. C. methoxybenzovorans o-demethylated these aromatic compounds to their corresponding hydroxylated derivatives and fermented the side chains to acetate and butyrate. The hydroxylated compounds and the fermentation end-products in the C. methoxybenzovorans spent growth medium were then completely metabolized to CO2 on inoculation with the Thauera strain. Kinetic studies with veratrate indicated that C. methoxybenzovorans initially o-demethylated the substrate to vanillate and then further to protocatechuate together with the production of acetate and butyrate from the demethylated side chains. Protocatechuate, acetate and butyrate were then utilized as a carbon source by the Thauera strain aerobically or anaerobically in the presence of nitrate. The results therefore suggest that mono- or dimethoxylated aromatic compounds can be completely mineralized by coupling the growth of a fermentative bacterium with a nitrate-reducing bacterium, and a metabolic pathway for this is proposed.  相似文献   

3.
H2 production and xylose utilization were investigated using the fermentative culture Clostridium beijerinckii NCIMB 8052. Adding anthrahydroquinone-2,6-disulfonate (AH2QDS) increased the extent of xylose utilization by 56% and hydrogen molar yield by 24–37%. Enhanced hydrogen molar yield correlated with increased xylose utilization and increases in the acetate/butyrate product ratio. An electron balance indicated that AH2QDS shifted the electrons from the butyric acid pathway (NADH-dependent pathway) to the acetic acid pathway (non-NADH-dependent pathway), putatively creating a surplus of reducing equivalents that were then available for hydrogen production. These data demonstrate that hydrogen yield and xylose utilization can be manipulated by amending redox active molecules into growing cultures. This will impact biohydrogen/biofuel production by allowing physiological manipulations of growing cells for increased (or decreased) output of selected metabolites using amendments that are not consumed during the reactions. Although the current yield increases are small, they suggest a target for cellular alterations. In addition, increased xylose utilization will be critical to the fermentation of pretreated lignocellulosic feedstocks, which may have higher xylose content.  相似文献   

4.
Dissimilatory ammonification was indicated as the common feature of ten rhizobial strains representing six species and three genera. In the absence of external electron acceptors, all investigated strains were capable of ethanolic fermentation. However, induction of anaerobic nitrite reduction was shown to be coupled with a shift of fermentation towards acetate in all the strains tested. Three metabolic groups could be distinguished with regard to nitrite regulation of ethanolic fermentation. It was shown for Bradyrhizobium sp. strain USDA 3045 that nitrite is the signal for switching between fermentative pathways although both ammonia and acetate excretion could not accelerate until nitrate had been utilized first. In the absence of N oxyanions, ethanol was indicated as the main product of mannitol fermentation, five-fold more abundant than acetate. An inverse composition was found in nitrite-amended cultures, due to a four-fold increase in acetate excretion whereas ethanol was kept at low level. Nitrite-supported fermentation towards acetate has not been previously reported for rhizobia. This benefit of this pathway was a two-fold shorter doubling time on 1% mannitol and 2.5 mM nitrite compared to no-nitrite media variants but also enabled fermentation of the more reduced carbon compound glycerol.  相似文献   

5.
Biological hydrogen production from synthesis gas was carried out in batch culture. The phototrophic anaerobic bacterium, Rhodospirillum rubrum was used to oxidize CO and water to CO2 and hydrogen. The bacteria were grown under anaerobic conditions in liquid medium; also acetate was used as carbon source in presence of synthesis gas. Biological hydrogen production was catalysed by R. rubrum via the water–gas shift reaction. A light-dependent cell growth modelled with a desired rate of hydrogen production and CO uptake was determined. The effect of light intensity on microbial cell growth was also studied at 500, 1,000 and 1,500 m.cd. A complete conversion of CO to hydrogen and maximum light efficiency were obtained with an acetate concentration of 1 g/l and light intensity of 500 m.cd. Utilization of the carbon monoxide from the gas phase was often considered as a mass transfer limited process, which needed to diffuse through the gas–liquid interface and then further diffuse into liquid medium prior to reaction. The results from this study showed that maximum cell propagation and hydrogen production were achieved with a limited light intensity of 1,000 m.cd. It was also found that high-light intensity may interfere with cell metabolism. In low-light intensity and substrate concentration, no inhibition was observed, however at extreme conditions, non-competitive inhibition was identified. The adverse effect of high-light intensity was shown at 5,000 m.cd, where the CO conversion drastically dropped to as low as 21%. Maximum CO conversion of 98% and maximum yield of 86% with an acetate concentration of 1.5 g/l and a light intensity of 1,000 m.cd were achieved.  相似文献   

6.
This study investigated the degradation of proteins and amino acids by Caloramator proteoclasticus, an anaerobic thermophilic (55 °C) fermentative bacterium isolated from an anaerobic bioreactor. Experiments were performed in the presence and absence of Methanobacterium thermoformicicum Z245, a methanogen that can use both hydrogen and formate for growth. Higher production rates and yields of the principal fermentation products from gelatin were observed in methanogenic coculture. The specific proteolytic activity in coculture tripled the value obtained in pure culture. C. proteoclasticus fermented glutamate to acetate, formate, hydrogen and alanine. In methanogenic coculture, a shift towards higher amounts of acetate and hydrogen with no alanine production was observed. Extracts of glutamate-grown cells possessed high activities of β-methylaspartase, a key enzyme of the mesaconate pathway leading to acetate. The presence of two enzymes (alanine-α-ketoglutarate aminotransferase and NADH-dependent alanine dehydrogenase) usually involved in the biosynthesis of alanine from pyruvate was also detected. The fermentation of amino acids known to be oxidatively deaminated (leucine and valine) was improved in the presence of both methanogenesis and glycine, a known electron acceptor in the Stickland reaction. Culture conditions seem to be very important in the way C. proteoclasticus disposes of reducing equivalents formed during the degradation of amino acids. Received: 29 March 1999 / Received revision: 2 July 1999 / Accepted: 1 August 1999  相似文献   

7.
To elucidate the physiological adaptation of Escherichia coli due to cra gene knockout, a total of 3,911 gene expressions were investigated by DNA microarray for continuous culture. About 50 genes were differentially regulated for the cra mutant. TCA cycle and glyoxylate shunt were down-regulated, while pentose phosphate (PP) pathway and Entner Doudoroff (ED) pathway were up-regulated in the cra mutant. The glucose uptake rate and the acetate production rate were increased with less acetate consumption for the cra mutant. To identify the genes controlled by Cra protein, the Cra recognition weight matrix from foot-printing data was developed and used to scan the whole genome. Several new Cra-binding sites were found, and some of the result was consistent with the DNA microarray data. The ED pathway was active in the cra mutant; we constructed cra.edd double genes knockout mutant to block this pathway, where the acetate overflowed due to the down-regulation of aceA,B and icd gene expressions. Then we further constructed cra.edd.iclR triple genes knockout mutant to direct the carbon flow through the glyoxylate pathway. The cra.edd.iclR mutant showed the least acetate production, resulting in the highest cell yield together with the activation of the glycolysis pathway, but the glucose consumption rate could not be improved. Dayanidhi Sarkar and Khandaker Al Zaid Siddiquee have contributed equally.  相似文献   

8.
刘洪艳  袁媛  张姗  李凯强 《微生物学通报》2021,48(12):4521-4529
[背景] 一些异化铁还原细菌兼具铁还原和发酵产氢能力,可作为发酵型异化铁还原细菌还原机制研究的对象。[目的] 筛选出一株发酵型异化铁还原细菌。在异化铁还原细菌培养体系中,设置不同电子供体并分析电子供体。[方法] 通过三层平板法从海洋沉积物中筛选纯菌株,基于16S rRNA基因序列进行菌株鉴定。通过测定细菌培养液Fe (II)浓度及发酵产氢量分析菌株异化铁还原和产氢性质。[结果] 菌株LQ25与Clostridium butyricum的16S rRNA基因序列相似性达到100%,结合电镜形态观察,菌株命名为Clostridium sp.LQ25。在氢氧化铁为电子受体培养条件下,菌株生长较对照组(未添加氢氧化铁)显著提高。菌株LQ25能够利用丙酮酸钠、葡萄糖和乳酸钠进行生长。丙酮酸钠为电子供体时,菌株LQ25细胞生长和异化铁还原效率最高,菌体蛋白质含量是(78.88±3.40) mg/L,累积产生Fe (II)浓度为(8.27±0.23) mg/L。以葡萄糖为电子供体时,菌株LQ25发酵产氢量最高,达(475.2±14.4) mL/L,相比对照组(未添加氢氧化铁)产氢量提高87.7%。[结论] 筛选到一株具有异化铁还原和发酵产氢能力的菌株Clostridium sp.LQ25,为探究发酵型异化铁还原细菌胞外电子传递机制提供了新的实验材料。  相似文献   

9.
A facultatively anaerobic bacterium, strain P-88, was enriched selectively under dual limitation by glutamate and oxygen in a chemostat. The new strain is a gram-negative motile rod. The mol% guanine plus cytosine of the DNA is 51.4±0.6 mol%. The organism grows on citrate as a sole source of carbon and energy, does not form acetoin, does not induce lysine decarboxylase and was thus classified as a species of the genus Citrobacter. A remarkable characteristic of the new isolate is its ability to grow on several amino acids with either a respiratory or a fermentative type of metabolism. Under strictly anoxic conditions glutamate was fermented to acetate, H2, CO2 and ammonia. Asparagine, aspartate and serine could also be fermented. Furthermore, all type strains of the genus Citrobacter were shown to have the same fermentative abilities. Based on enzyme activities determined in cell-free extracts a combination of the methylaspartate pathway and the mixed acid fermentation of Enterobacteriaceae is proposed to explain the glutamate fermentation pattern observed in cultures of strain P-88. Analysis of the growth of strain P-88 in continuous culture with various degrees of oxygen supply, demonstrated that the bacterium can rapidly switch between oxic and anoxic metabolism. Cultures of strain P-88 grown under oxygen limitation simultaneously respire and ferment glutamate, suggesting that the organism is particularly well adapted to growth in microoxic environments.  相似文献   

10.
The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet extract (SB) were comparatively evaluated for fermentative hydrogen production. Pretreatments and/or enzymatic hydrolysis led to 27, 37, 56, 74 and 45 g soluble sugars/100 g dry BS, CS, BG, CG and SB, respectively. A rapid test was applied to evaluate the fermentability of the hydrolysates and SB extract. The thermophilic bacterium Caldicellulosiruptor saccharolyticus showed high hydrogen production on hydrolysates of mild-acid pretreated BS, hydrolysates of BG and CG, and SB extract. Mild-acid pretreated CS showed limited fermentability, which was partially due to inhibitory products released in the hydrolysates, implying the need for the employment of a milder pretreatment method. The difference in the fermentability of BS and CS is in strong contrast to the similarity of the composition of these two feedstocks. The importance of performing fermentability tests to determine the suitability of a feedstock for hydrogen production was confirmed.  相似文献   

11.
Due to its availability, low‐price, and high degree of reduction, glycerol has become an attractive carbon source for the production of fuels and reduced chemicals. Using the platform we have established from the identification of key pathways mediating fermentative metabolism of glycerol, this work reports the engineering of Escherichia coli for the conversion of glycerol into 1,2‐propanediol (1,2‐PDO). A functional 1,2‐PDO pathway was engineered through a combination of overexpression of genes involved in its synthesis from the key intermediate dihydroxyacetone phosphate (DHAP) and the manipulation of the fermentative glycerol utilization pathway. The former included the overexpression of methylglyoxal synthase (mgsA), glycerol dehydrogenase (gldA), and aldehyde oxidoreductase (yqhD). Manipulation of the glycerol utilization pathway through the replacement of the native E. coli PEP‐dependent dihydroxyacetone kinase (DHAK) with an ATP‐dependent DHAK from C. freundii increased the availability of DHAP allowing for higher 1,2‐PDO production. Analysis of the major fermentative pathways indentified ethanol as a required co‐product while increases in 1,2‐PDO titer and yield were achieved through the disruption of the pathways for acetate and lactate production. Combination of these key metabolic manipulations resulted in an engineered E. coli strain capable of producing 5.6 g/L 1,2‐PDO, at a yield of 21.3% (w/w). This strain also performed well when crude glycerol, a by‐product of biodiesel production, was used as the substrate. The titer and yield achieved in this study were favorable to those obtained with the use of E. coli for the production of 1,2‐PDO from common sugars. Biotechnol. Bioeng. 2011; 108:867–879. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
Song J  An D  Ren N  Zhang Y  Chen Y 《Bioresource technology》2011,102(23):10875-10880
The microbial structure and kinetic characteristics of the hydrogen producing strains in two fermentative continuous stirred-tank reactors (CSTRs) were studied by controlling pH and oxidation and reduction potential (ORP). The fluorescence in situ hybridization (FISH) tests were conducted to investigate the fermentative performance of Clostridium histolyticum (C. histolyticum), Clostridium lituseburense (C. lituseburense) and Enterobacteriaceae. The experimental results showed that in ethanol-type reactor 1#, the relative abundance of the strains was 48%, 30% and 22%. Comparatively, the relative abundance in butyric acid-type reactor 2# was 24%, 55% and 19% with butyric acids and hydrogen as the main products. The kinetic results indicated that the hydrogen yield coefficients YP/X in both reactors were 8.357 and 5.951 l-H2/g, while the coefficients of the cellular yield were 0.0268 and 0.0350 g-Cell/g, respectively. At the same biomass, the hydrogen yield in ethanol-type reactors was more than that in butyric acid reactors. However, the cellular synthesis rate in ethanol-type reactors was low when the same carbon source was used.  相似文献   

13.
Zhu Y  Chen X  Chen T  Shi S  Zhao X 《Biotechnology letters》2006,28(20):1667-1672
Ribulose 5-phosphate is a precursor for riboflavin biosynthesis. Alteration of carbon flow into the pentose phosphate pathway will affect the availability of ribulose 5-phosphate and the riboflavin yield. We have modulated carbon flow in Bacillus subtilis through the gluconate bypass by over-expression of glucose dehydrogenase under the control of the constitutively expressed P43 promoter. Over-expression of glucose dehydrogenase resulted in low acid production (acetate and pyruvate). The substantial reduction in acid production is accompanied by increased riboflavin production and an increased rate of growth while glucose consumption remained unchanged. Metabolic analysis indicated that over-expression of glucose dehydrogenase increased intracellular pool of ribulose 5-phosphate. The high concentrations of ribulose 5-phosphate could explain the increased riboflavin production.  相似文献   

14.
Microlunatus phosphovorus is an activated-sludge bacterium with high levels of phosphorus-accumulating activity and phosphate uptake and release activities. Thus, it is an interesting model organism to study biological phosphorus removal. However, there are no studies demonstrating the polyhydroxyalkanoate (PHA) storage capability of M. phosphovorus, which is surprising for a polyphosphate-accumulating organism. This study investigates in detail the PHA storage behavior of M. phosphovorus under different growth conditions and using different carbon sources. Pure culture studies in batch-growth systems were conducted in shake-flasks and in a bioreactor, using chemically defined growth media with glucose as the sole carbon source. A batch-growth system with anaerobic–aerobic cycles and varying concentrations of glucose or acetate as the sole carbon source, similar to enhanced biological phosphorus removal processes, was also employed. The results of this study demonstrate for the first time that M. phosphovorus produces significant amounts of PHAs under various growth conditions and with different carbon sources. When the PHA productions of all cultivations were compared, poly(3-hydroxybutyrate) (PHB), the major PHA polymer, was produced at about 20–30% of the cellular dry weight. The highest PHB production was observed as 1,421 mg/l in batch-growth systems with anaerobic–aerobic cycles and at 4 g/l initial glucose concentration. In light of these key results regarding the growth physiology and PHA-production capability of M. phosphovorus, it can be concluded that this organism could be a good candidate for microbial PHA production because of its advantages of easy growth, high biomass and PHB yield on substrate and no significant production of fermentative byproducts.  相似文献   

15.
A genetically engineered strain of Escherichia coli JM109 harboring the isopropanol-producing pathway consisting of five genes encoding four enzymes, thiolase, coenzyme A (CoA) transferase, acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824, and primary–secondary alcohol dehydrogenase from C. beijerinckii NRRL B593, produced up to 227 mM of isopropanol from glucose under aerobic fed-batch culture conditions. Acetate production by the engineered strain was approximately one sixth that produced by a control E. coli strain bearing an expression vector without the clostridial genes. These results demonstrate a functional isopropanol-producing pathway in E. coli and consequently carbon flux from acetyl-CoA directed to isopropanol instead of acetate. This is the first report on isopropanol production by genetically engineered microorganism under aerobic culture conditions.  相似文献   

16.
A derivative strain of Escherichia coli MG1655 for d-lactate production was constructed by deleting the pflB, adhE and frdA genes; this strain was designated “CL3.” Results show that the CL3 strain grew 44% slower than its parental strain under nonaerated (fermentative) conditions due to the inactivation of the main acetyl-CoA production pathway. In contrast to E. coli B and W3110 pflB derivatives, we found that the MG1655 pflB derivative is able to grow in mineral media with glucose as the sole carbon source under fermentative conditions. The glycolytic flux was 2.8-fold higher in CL3 when compared to the wild-type strain, and lactate yield on glucose was 95%. Although a low cell mass formed under fermentative conditions with this strain (1.2 g/L), the volumetric productivity of CL3 was 1.31 g/L h. In comparison with the parental strain, CL3 has a 22% lower ATP/ADP ratio. In contrast to wild-type E. coli, the ATP yield from glucose to lactate is 2 ATP/glucose, so CL3 has to improve its glycolytic flux in order to fulfill its ATP needs in order to grow. The aceF deletion in strains MG1655 and CL3 indicates that the pyruvate dehydrogenase (PDH) complex is functional under glucose-fermentative conditions. These results suggest that the pyruvate to acetyl-CoA flux in CL3 is dependent on PDH activity and that the decrease in the ATP/ADP ratio causes an increase in the flux of glucose to lactate.  相似文献   

17.
18.
Clostridial acetone–butanol–ethanol (ABE) fermentation is a natural source for microbial n-butanol production and regained much interest in academia and industry in the past years. Due to the difficult genetic accessibility of Clostridium acetobutylicum and other solventogenic clostridia, successful metabolic engineering approaches are still rare. In this study, a set of five knock-out mutants with defects in the central fermentative metabolism were generated using the ClosTron technology, including the construction of targeted double knock-out mutants of C. acetobtuylicum ATCC 824. While disruption of the acetate biosynthetic pathway had no significant impact on the metabolite distribution, mutants with defects in the acetone pathway, including both acetoacetate decarboxylase (Adc)-negative and acetoacetyl-CoA:acyl-CoA transferase (CtfAB)-negative mutants, exhibited high amounts of acetate in the fermentation broth. Distinct butyrate increase and decrease patterns during the course of fermentations provided experimental evidence that butyrate, but not acetate, is re-assimilated via an Adc/CtfAB-independent pathway in C. acetobutylicum. Interestingly, combining the adc and ctfA mutations with a knock-out of the phosphotransacetylase (Pta)-encoding gene, acetate production was drastically reduced, resulting in an increased flux towards butyrate. Except for the Pta-negative single mutant, all mutants exhibited a significantly reduced solvent production.  相似文献   

19.
[背景]乙酸肉桂酯是一种重要的香料化合物,在化妆品和食品工业上具有广泛的应用,传统的生产方法主要依靠植物提取和化学合成。[目的]通过筛选不同植物源的酰基转移酶,利用大肠杆菌从头合成乙酸肉桂酯。[方法]首先,通过在苯丙氨酸高产菌BPHE中表达异源基因苯丙氨酸解氨酶(Phenylalanine Ammonia-Lyase from Arabidopsis thaliana,AtPAL)、对羟基肉桂酰辅酶A连接酶(Hydroxycinnamate:CoA Ligase from Petroselinum crispum,Pc4CL)和肉桂酰辅酶 A 还原酶(Cinnamyl-CoA Reductase from Arabidopsis thaliana,AtCCR),并结合大肠杆菌自身的内源性醇脱氢酶(Alcohol Dehydrogenases,ADHs)或醛酮还原酶(Aldo-Keto Reductases,AKRs)的催化作用构建了从苯丙氨酸到肉桂醇的生物合成途径。然后,苯甲醇苯甲酰转移酶(Benzyl Alcohol O-Benzoyltransferase from Nicotiana tabacum,ANN09798;Benzyl Alcohol O-Benzoyltransferase from Clarkia breweri,ANN09796)或苯甲醇乙酰转移酶(Benzyl Alcohol Acetyltransferase from Clarkia breweri,BEAT)被引入到上述重组大肠杆菌中发酵培养生产乙酸肉桂酯。最后,在大肠杆菌中过表达乙酰辅酶A合成酶(Acetyl Coenzyme A Synthetase,ACS)来提高底物乙酰辅酶A的量。[结果]探讨了 3个植物源苯甲醇酰基转移酶生物合成乙酸肉桂酯的能力,并应用于合成乙酸肉桂酯的细胞工厂,最终使乙酸肉桂酯最高产量达到166.9±6.6mg/L。[结论]植物源苯甲醇酰基转移酶具有一定的底物宽泛性,能以肉桂醇为底物催化合成乙酸肉桂酯。首次利用植物源的苯甲醇酰基转移酶合成乙酸肉桂酯,为微生物细胞工厂以葡萄糖作为碳源生产乙酸肉桂酯提供参考。  相似文献   

20.
亚心型四爿藻在CCCP作用下的光生物产氢的代谢途径   总被引:1,自引:0,他引:1  
以添加CCCP(羰基氰化物间氯苯腙,Carbonyl cyanide m-chlorophenylhydrazone)的海洋绿藻亚心型四爿藻光生物制氢为研究体系,使用作用于光合系统不同位点的抑制剂研究该藻产氢过程不同时段的代谢途径。结果表明:四爿藻光生物产氢前期电子主要来自PS Ⅱ光解水以及胞内分解代谢,电子经由光合电子传递链传递至氢酶产生氢气;而后期释放的氢气则是通过不依赖光合电子传递链的发酵途径产生。产氢过程厌氧发酵代谢途径主要产物是乙酸、乙醇,其中乙醇代谢途径和氢酶竞争NAD(P)H,不利于氢气的积累。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号