首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway.  相似文献   

2.
Optimization of a lead thiazole amide MF-152 led to the identification of potent bicyclic heteroaryl SCD1 inhibitors with good mouse pharmacokinetic profiles. In a view to target the liver for efficacy and to avoid SCD1 inhibition in the skin and eyes where adverse effects were previously observed in rodents, representative systemically-distributed SCD1 inhibitors were converted into liver-targeting SCD1 inhibitors.  相似文献   

3.
A positive correlation between stearoyl-CoA desaturase (SCD)1 expression and metabolic diseases has been reported in rodents and humans. These findings indicate that SCD1 is a promising therapeutic target for the chronic treatment of diabetes and dyslipidemia. The SCD1 enzyme is expressed at high levels in several human tissues and is required for the biosynthesis of monounsaturated fatty acids, which are involved in many biological processes. Liver-targeted SCD inhibitors were designed to pharmacologically manipulate SCD1 activity in the liver to avoid adverse events due to systemic inhibition. This article describes the development of a plasma-based SCD assay to assess the level of SCD inhibition, which is defined in this article as target engagement. Essentially, animals are dosed with an exogenous deuterated tracer (d7-stearic acid) as substrate, and the converted d7-oleic acid product is measured to monitor SCD1 inhibition. This study reveals that this plasma-based assay correlates with liver SCD1 inhibition and can thus have clinical utility.  相似文献   

4.
5.
A series of structurally novel stearoyl-CoA desaturase1 (SCD1) inhibitors has been identified via molecular scaffold manipulation. Preliminary structure–activity relationship (SAR) studies led to the discovery of potent, and orally bioavailable piperidine-aryl urea-based SCD1 inhibitors. 4-(2-Chlorophenoxy)-N-[3-(methyl carbamoyl)phenyl]piperidine-1-carboxamide 4c exhibited robust in vivo activity with dose-dependent desaturation index lowering effects.  相似文献   

6.
The discovery of potent benzimidazole stearoyl-CoA desaturase (SCD1) inhibitors by ligand-based virtual screening is described. ROCS 3D-searching gave a favorable chemical motif that was subsequently optimized to arrive at a chemical series of potent and promising SCD1 inhibitors. In particular, compound SAR224 was selected for further pharmacological profiling based on favorable in vitro data. After oral administration to male ZDF rats, this compound significantly decreased the serum fatty acid desaturation index, thus providing conclusive evidence for SCD1 inhibition in vivo by SAR224.  相似文献   

7.
Autophagy is one of the major degradation pathways for cytoplasmic components. The autophagic isolation membrane is a unique membrane whose content of unsaturated fatty acids is very high. However, the molecular mechanisms underlying formation of this membrane, including the roles of unsaturated fatty acids, remain to be elucidated. From a chemical library consisting of structurally diverse compounds, we screened for novel inhibitors of starvation-induced autophagy by measuring LC3 puncta formation in mouse embryonic fibroblasts stably expressing GFP-LC3. One of the inhibitors we identified, 2,5-pyridinedicarboxamide, N2,N5-bis[5-[(dimethylamino)carbonyl]-4-methyl-2-thiazolyl], has a molecular structure similar to that of a known stearoyl-CoA desaturase (SCD) 1 inhibitor. To determine whether SCD1 inhibition influences autophagy, we examined the effects of the SCD1 inhibitor 28c. This compound strongly inhibited starvation-induced autophagy, as determined by LC3 puncta formation, immunoblot analyses of LC3, electron microscopic observations, and p62/SQSTM1 accumulation. Overexpression of SCD1 or supplementation with oleic acid, which is a catalytic product of SCD1 abolished the inhibition of autophagy by 28c. Furthermore, 28c suppressed starvation-induced autophagy without affecting mammalian target of rapamycin activity, and also inhibited rapamycin-induced autophagy. In addition to inhibiting formation of LC3 puncta, 28c also inhibited formation of ULK1, WIPI1, Atg16L, and p62/SQSTM1 puncta. These results suggest that SCD1 activity is required for the earliest step of autophagosome formation.  相似文献   

8.
We discovered a series of novel and potent thiazolylpyridinone-based SCD1 inhibitors based on a 2-aminothiazole HTS hit by replacing the amide bond with a pyridinone moiety. Compound 19 demonstrated good potency against SCD1 in vitro and in vivo. The mouse liver microsomal SCD1 in vitro potency for 19 was improved by more than 240-fold compared to the original HTS hit. Furthermore, 19 demonstrated a dose-dependent reduction of plasma desaturation index with an ED50 of 6.3 mg/kg. Compound 19 demonstrated high liver to plasma and liver to eyelid exposures, indicating preferential liver distribution. The preliminary toxicology study with compound 19 did not demonstrate adverse effects related to SCD1 inhibition, suggesting a wide safety margin with respect to other known SCD1 inhibitors with wider distribution profiles.  相似文献   

9.
A series of potent, benzimidazole-based SCD inhibitors which demonstrate selectivity for the hSCD1 enzyme over the hSCD5 isoform are described. The compounds possess suitable cellular activity and pharmacokinetic properties which render them capable of inhibiting liver SCD activity in a mouse pharmacodynamic assay. These 2-aryl benzimidazoles may serve as valuable tools for studying selective hSCD1-inhibition.  相似文献   

10.
Design, synthesis, and biological evaluation of pyridazine-based, 4-bicyclic heteroaryl-piperidine derivatives as potent stearoyl-CoA desaturase-1 (SCD1) inhibitors are described. In a chronic study of selected analog (3e) in Zucker fa/fa (ZF) rat, dose-dependent decrease of body weight gain and plasma fatty acid desaturation index (DI) in both C16 and C18 are also demonstrated. The results indicate that the plasma fatty acid DI may serve as an indicator for direct target engagement and biomarker for SCD1 inhibition.  相似文献   

11.
A new series of urea-based, 4-bicyclic heteroaryl-piperidine derivatives as potent SCD1 inhibitors is described. The structure–activity relationships focused on bicyclic heteroarenes and aminothiazole–urea portions are discussed. A trend of dose-dependent decrease in body weight gain in diet-induced obese (DIO) mice is also demonstrated.  相似文献   

12.
A series of stearoyl-CoA desaturase 1 (SCD1) inhibitors were developed. Investigations of enzyme potency and metabolism led to the identification of the thiadiazole–pyridazine derivative MF-438 as a potent SCD1 inhibitor. MF-438 exhibits good pharmacokinetics and metabolic stability, thereby serving as a valuable tool for further understanding the role of SCD inhibition in biological and pharmacological models of diseases related to metabolic disorders.  相似文献   

13.
A potent, small molecule inhibitor with a favorable pharmacokinetic profile to allow for sustained SCD inhibition in vivo was identified. Starting from a low MW acyl guanidine (5a), identified with a RapidFire High-Throughput Mass Spectrometry (RF-MS) assay, iterative library design was used to rapidly probe the amide and tail regions of the molecule. Singleton synthesis was used to probe core changes. Biological evaluation of a SCD inhibitor (5b) included in vitro potency at SCD-1 and in vivo modulation of the plasma desaturation index (DI) in rats on a low essential fatty acid (LEFA) diet. In addition to dose-dependent decrease in DI, effects on rodent ocular tissue were noted. Therefore, in rat, these SCD inhibitors only recapitulate a portion of phenotype exhibited by the SCD-1 knockout mouse.  相似文献   

14.
In the leaf epidermis, guard mother cells undergo a stereotyped symmetric division to form the guard cells of stomata. We have identified a temperature-sensitive Arabidopsis mutant, stomatal cytokinesis-defective 1-1 (scd1-1), which affects this specialized division. At the non-permissive temperature, 22 degrees C, defective scd1-1 guard cells are binucleate, and the formation of their ventral cell walls is incomplete. Cytokinesis was also disrupted in other types of epidermal cells such as pavement cells. Further phenotypic analysis of scd1-1 indicated a role for SCD1 in seedling growth, root elongation and flower morphogenesis. More severe scd1 T-DNA insertion alleles (scd1-2 and scd1-3) markedly affect polar cell expansion, most notably in trichomes and root hairs. SCD1 is a unique gene in Arabidopsis that encodes a protein related to animal proteins that regulate intracellular protein transport and/or mitogen-activated protein kinase signaling pathways. Consistent with a role for SCD1 in membrane trafficking, secretory vesicles were found to accumulate in cytokinesis-defective scd1 cells. In addition the scd1 mutant phenotype was enhanced by low doses of inhibitors of cell plate consolidation and vesicle secretion. We propose that SCD1 functions in polarized vesicle trafficking during plant cytokinesis and cell expansion.  相似文献   

15.
In recent years, studies of cancer development and recurrence have been influenced by the cancer stem cells (CSCs)/cancer-initiating cells (CICs) hypothesis. According to this, cancer is sustained by highly positioned, chemoresistant cells with extensive capacity of self renewal, which are responsible for disease relapse after chemotherapy. Growth of cancer cells as three-dimensional non-adherent spheroids is regarded as a useful methodology to enrich for cells endowed with CSC-like features. We have recently reported that cell cultures derived from malignant pleural effusions (MPEs) of patients affected by adenocarcinoma of the lung are able to efficiently form spheroids in non-adherent conditions supplemented with growth factors. By expression profiling, we were able to identify a set of genes whose expression is significantly upregulated in lung tumor spheroids versus adherent cultures. One of the most strongly upregulated gene was stearoyl-CoA desaturase (SCD1), the main enzyme responsible for the conversion of saturated into monounsaturated fatty acids. In the present study, we show both by RNA interference and through the use of a small molecule inhibitor that SCD1 is required for lung cancer spheroids propagation both in stable cell lines and in MPE-derived primary tumor cultures. Morphological examination and image analysis of the tumor spheroids formed in the presence of SCD1 inhibitors showed a different pattern of growth characterized by irregular cell aggregates. Electron microscopy revealed that the treated spheroids displayed several features of cellular damage and immunofluorescence analysis on optical serial sections showed apoptotic cells positive for the M30 marker, most of them positive also for the stemness marker ALDH1A1, thus suggesting that the SCD1 inhibitor is selectively killing cells with stem-like properties. Furthermore, SCD1-inhibited lung cancer cells were strongly impaired in their in vivo tumorigenicity and ALDH1A1 expression. These results suggest that SCD1 is a critical target in lung cancer tumor-initiating cells.  相似文献   

16.
Stearoyl-CoA desaturase 1 (SCD1) deficiency protects mice from diet-induced obesity and insulin resistance. To understand the tissue-specific role of SCD1 in energy homeostasis, we have generated mice with an adipose-specific knockout of Scd1 (AKO), and report here that SCD1 deficiency increases GLUT1 expression in adipose tissue of AKO mice, but not global SCD1 knockout (GKO) mice. In 3T3-L1 adipocytes treated with an SCD inhibitor, basal glucose uptake and the cellular expression of GLUT1 were significantly increased while GLUT4 expression remained unchanged. Consistently, adipose-specific SCD1 knockout (AKO) mice had significantly elevated GLUT1 expression, but not GLUT4, in white adipose tissue compared to Lox counterparts. Concurrently, adiponectin expression was significantly diminished, whereas TNF-α expression was elevated. In contrast, in adipose tissue of GKO mice, GLUT4 and adiponectin expression were significantly elevated with lowered TNF-α expression and little change in GLUT1 expression, suggesting a differential responsiveness of adipose tissue to global- or adipose-specific SCD1 deletion. Taken together, these results indicate that adipose-specific deletion of SCD1 induces GLUT1 up-regulation in adipose tissue, associated with decreased adiponectin and increased TNF-α production, and suggest that GLUT1 may play a critical role in controlling glucose homeostasis of adipose tissue in adipose-specific SCD1-deficient conditions.  相似文献   

17.
Effective inhibitors of matrix metalloproteinases (MMPs), a family of connective tissue-degrading enzymes, could be useful for the treatment of diseases such as cancer, multiple sclerosis, and arthritis. Many of the known MMP inhibitors are derived from peptide substrates, with high potency in vitro but little selectivity among MMPs and poor bioavailability. We have discovered nonpeptidic MMP inhibitors with improved properties, and report here the crystal structures of human stromelysin-1 catalytic domain (SCD) complexed with four of these inhibitors. The structures were determined and refined at resolutions ranging from 1.64 to 2.0 A. Each inhibitor binds in the active site of SCD such that a bulky diphenyl piperidine moiety penetrates a deep, predominantly hydrophobic S'1 pocket. The active site structure of the SCD is similar in all four inhibitor complexes, but differs substantially from the peptide hydroxamate complex, which has a smaller side chain bound in the S'1 pocket. The largest differences occur in the loop forming the "top" of this pocket. The occupation of these nonpeptidic inhibitors in the S'1 pocket provides a structural basis to explain their selectivity among MMPs. An analysis of the unique binding mode predicts structural modifications to design improved MMP inhibitors.  相似文献   

18.
Animal studies have revealed the association between stearoyl-CoA desaturase 1 (SCD1) and obesity and insulin resistance. However, only a few studies have been undertaken in humans. We studied SCD1 in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) from morbidly obese patients and their association with insulin resistance, sterol regulatory element binding protein-1 (SREBP-1) and ATPase p97, proteins involved in SCD1 synthesis and degradation. The insulin resistance was calculated in 40 morbidly obese patients and 11 overweight controls. Measurements were made of VAT and SAT SCD1, SREBP-1 and ATPase p97 mRNA expression and protein levels. VAT and SAT SCD1 mRNA expression levels in the morbidly obese patients were significantly lower than in the controls (P = 0.006), whereas SCD1 protein levels were significantly higher (P < 0.001). In the morbidly obese patients, the VAT SCD1 protein levels were decreased in patients with higher insulin resistance (P = 0.007). However, SAT SCD1 protein levels were increased in morbidly obese patients with higher insulin resistance (P < 0.05). Multiple linear regressions in the morbidly obese patients showed that the variable associated with the SCD1 protein levels in VAT was insulin resistance, and the variables associated with SCD1 protein levels in SAT were body mass index (BMI) and ATPase p97. In conclusion, these data suggest that the regulation of SCD1 is altered in individuals with morbid obesity and that the SCD1 protein has a different regulation in the two adipose tissues, as well as being closely linked to the degree of insulin resistance.  相似文献   

19.
Membrane topology of mouse stearoyl-CoA desaturase 1   总被引:3,自引:0,他引:3  
Stearoyl-CoA desaturase (SCD) is an integral membrane protein anchored in the endoplasmic reticulum. It catalyzes the biosynthesis of monounsaturated fatty acids that are required for the synthesis of triglycerides, cholesteryl esters, and phospholipids. Four mouse isoforms of SCD (SCD1-4) and two human isoforms have been characterized. In the current study, we characterize the topology of the mouse SCD1 isoform. Hydropathy analysis of the 355-amino acid mouse SCD1 protein predicts that the protein contains four transmembrane domains (TMDs) and three loops connecting the membrane-spanning domains. To define the topology of the protein, recombinant SCD1 constructs containing epitope tags were transiently expressed in HeLa cells and analyzed by indirect immunofluorescence and cysteine derivatization. Our data provide evidence that the N and C termini of SCD1 are oriented toward the cytosol with four transmembrane domains separated by two very short hydrophilic loops in the ER lumen and one large hydrophilic loop in the cytosol. In addition, based on the previous observation that SCD is a thiol enzyme, we sought to investigate whether the cysteine residues were essential for enzyme activity through mutagenesis studies, and our data suggest that the cysteines in SCD are not catalytically essential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号