首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Hybrid females from Drosophila simulans females X Drosophila melanogaster males die as embryos while hybrid males from the reciprocal cross die as larvae. We have recovered a mutation in melanogaster that rescues the former hybrid females. It was located on the X chromosome at a position close to the centromere, and it was a zygotically acting gene, in contrast with mhr (maternal hybrid rescue) in simulans that rescues the same hybrids maternally. We named it Zhr (Zygotic hybrid rescue). The gene also rescues hybrid females from embryonic lethals in crosses of Drosophila mauritiana females X D. melanogaster males and of Drosophila sechellia females X D. melanogaster males. Independence of the hybrid embryonic lethality and the hybrid larval lethality suggested in a companion study was confirmed by employing two rescue genes, Zhr and Hmr (Hybrid male rescue), in doubly lethal hybrids. A model is proposed to explain the genetic mechanisms of hybrid lethalities as well as the evolutionary pathways.  相似文献   

2.
The Lethal hybrid rescue (Lhr) gene causes hybrid male lethality in crosses between Drosophila simulans and D. melanogaster. Lhr(2) is a D. simulans allele, which rescues hybrid males. It has been recently proposed that a 16 codon insertion, which distinguishes the D. melanogaster and the canonical D. simulans allele, and is lacking in Lhr(2), may be responsible for the functional divergence of D. melanogaster and D. simulans Lhr alleles. Here, we show that the Lhr(2) allele lacking the insertion represents an ancestral polymorphism segregating at a moderate frequency in D. simulans. Crosses of D. melanogaster females to males from two D. simulans strains carrying this deletion showed a severe deficiency of viable hybrid males. Our results suggest that the absence of this insertion alone is not sufficient to explain functional differences between D. melanogaster and D. simulans Lhr alleles.  相似文献   

3.
Barbash DA 《Genetics》2007,176(1):543-552
The cross of Drosophila melanogaster females to D. simulans males typically produces lethal F(1) hybrid males. F(1) male lethality is suppressed when the D. simulans Lhr(1) hybrid rescue strain is used. Viability of these F(1) males carrying Lhr(1) is in turn substantially reduced when the hybrids are heterozygous for some mutant alleles of the D. melanogaster Nup96 gene. I show here that similar patterns of Nup96-dependent lethality occur when other hybrid rescue mutations are used to create F(1) males, demonstrating that Nup96 does not reduce hybrid viability by suppressing the Lhr(1) rescue effect. The penetrance of this Nup96-dependent lethality does not correlate with the penetrance of the F(1) hybrid rescue, arguing that these two phenomena reflect genetically independent processes. D. simulans, together with two additional sister species, forms a clade that speciated after the divergence of their common ancestor from D. melanogaster. I report here that Nup96(-) reduces F(1) viability in D. melanogaster hybrids with one of these sister species, D. sechellia, but not with the other, D. mauritiana. These results suggest that Nup96-dependent lethality evolved after the speciation of D. melanogaster from the common ancestor of the simulans clade and is caused by an interaction among Nup96, unknown gene(s) on the D. melanogaster X chromosome, and unknown autosomal gene(s), at least some of which have diverged in D. simulans and D. sechellia but not in D. mauritiana. The genetic properties of Nup96 are also discussed relative to other hybrid lethal genes.  相似文献   

4.
5.
The Dobzhansky and Muller (D-M) model explains the evolution of hybrid incompatibility (HI) through the interaction between lineage-specific derived alleles at two or more loci. In agreement with the expectation that HI results from functional divergence, many protein-coding genes that contribute to incompatibilities between species show signatures of adaptive evolution, including Lhr, which encodes a heterochromatin protein whose amino acid sequence has diverged extensively between Drosophila melanogaster and D. simulans by natural selection. The lethality of D. melanogaster/D. simulans F1 hybrid sons is rescued by removing D. simulans Lhr, but not D. melanogaster Lhr, suggesting that the lethal effect results from adaptive evolution in the D. simulans lineage. It has been proposed that adaptive protein divergence in Lhr reflects antagonistic coevolution with species-specific heterochromatin sequences and that defects in LHR protein localization cause hybrid lethality. Here we present surprising results that are inconsistent with this coding-sequence-based model. Using Lhr transgenes expressed under native conditions, we find no evidence that LHR localization differs between D. melanogaster and D. simulans, nor do we find evidence that it mislocalizes in their interspecific hybrids. Rather, we demonstrate that Lhr orthologs are differentially expressed in the hybrid background, with the levels of D. simulans Lhr double that of D. melanogaster Lhr. We further show that this asymmetric expression is caused by cis-by-trans regulatory divergence of Lhr. Therefore, the non-equivalent hybrid lethal effects of Lhr orthologs can be explained by asymmetric expression of a molecular function that is shared by both orthologs and thus was presumably inherited from the ancestral allele of Lhr. We present a model whereby hybrid lethality occurs by the interaction between evolutionarily ancestral and derived alleles.  相似文献   

6.
Kern AD  Jones CD  Begun DJ 《Genetics》2004,167(2):725-735
Accessory gland proteins are a major component of Drosophila seminal fluid. These proteins have a variety of functions and may be subject to sexual selection and/or antagonistic evolution between the sexes. Most population genetic data from these proteins are from D. melanogaster and D. simulans. Here, we extend the population genetic analysis of Acp genes to the other simulans complex species, D. mauritiana and D. sechellia. We sequenced population samples of seven Acp's from D. mauritiana, D. sechellia, and D. simulans. We investigated the population genetics of these genes on individual simulans complex lineages and compared Acp polymorphism and divergence to polymorphism and divergence from a set of non-Acp loci in the same species. Polymorphism and divergence data from the simulans complex revealed little evidence for adaptive protein evolution at individual loci. However, we observed a dramatically inflated index of dispersion for amino acid substitutions in the simulans complex at Acp genes, but not at non-Acp genes. This pattern of episodic bursts of protein evolution in Acp's provides the strongest evidence to date that the population genetic mechanisms driving Acp divergence are different from the mechanisms driving evolution at most Drosophila genes.  相似文献   

7.
Adaptive evolution of Cid, a centromere-specific histone in Drosophila   总被引:13,自引:0,他引:13  
Malik HS  Henikoff S 《Genetics》2001,157(3):1293-1298
Centromeric DNA is generally composed of large blocks of tandem satellite repeats that change rapidly due to loss of old arrays and expansion of new repeat classes. This extreme heterogeneity of centromeric DNA is difficult to reconcile with the conservation of the eukaryotic chromosome segregation machinery. Histone H3-like proteins, including Cid in Drosophila melanogaster, are a unique chromatin component of centromeres. In comparisons between closely related species of Drosophila, we find an excess of replacement changes that have been fixed since the separation of D. melanogaster and D. simulans, suggesting adaptive evolution. The last adaptive changes appear to have occurred recently, as evident from a reduction in polymorphism in the melanogaster lineage. Adaptive evolution has occurred both in the long N-terminal tail as well as in the histone fold of Cid. In the histone fold, the replacement changes have occurred in the region proposed to mediate binding to DNA. We propose that this rapid evolution of Cid is driven by a response to the changing satellite repeats at centromeres. Thus, centromeric H3-like proteins may act as adaptors between evolutionarily labile centromeric DNA and the conserved kinetochore machinery.  相似文献   

8.
Barbash DA  Ashburner M 《Genetics》2003,163(1):217-226
Hybrid daughters of crosses between Drosophila melanogaster females and males from the D. simulans species clade are fully viable at low temperature but have agametic ovaries and are thus sterile. We report here that mutations in the D. melanogaster gene Hybrid male rescue (Hmr), along with unidentified polymorphic factors, rescue this agametic phenotype in both D. melanogaster/D. simulans and D. melanogaster/D. mauritiana F(1) female hybrids. These hybrids produced small numbers of progeny in backcrosses, their low fecundity being caused by incomplete rescue of oogenesis as well as by zygotic lethality. F(1) hybrid males from these crosses remained fully sterile. Hmr(+) is the first Drosophila gene shown to cause hybrid female sterility. These results also suggest that, while there is some common genetic basis to hybrid lethality and female sterility in D. melanogaster, hybrid females are more sensitive to fertility defects than to lethality.  相似文献   

9.
Nup96 is involved in a lethal hybrid incompatibility between 2 fruit fly species, Drosophila melanogaster and Drosophila simulans. Recurrent adaptive evolution drove the rapid functional divergence of Nup96 in both the D. melanogaster and the D. simulans lineages. Functional divergence of Nup96 between these 2 species is unexpected as Nup96 encodes part of the Nup107 subcomplex, an architectural component of nuclear pore complexes, the macromolecular channels in nuclear envelopes that mediate nucleocytoplasmic traffic in all eukaryotes. Here we study the evolutionary histories of 5 of Nup96's protein interactors--3 stable Nup107 subcomplex proteins (Nup75, Nup107, and Nup133) and 2 mobile nucleoporins (Nup98 and Nup153)--and show that all 5 have experienced recurrent adaptive evolution. These results are consistent with selection-driven coevolution among molecular interactors within species causing the incidental evolution of incompatible interactions seen in hybrids between species. We suggest that genetic conflict-driven processes may have contributed to the rapid molecular evolution of Nup107 subcomplex genes.  相似文献   

10.
Pröschel M  Zhang Z  Parsch J 《Genetics》2006,174(2):893-900
Many genes in higher eukaryotes show sexually dimorphic expression, and these genes tend to be among the most divergent between species. In most cases, however, it is not known whether this rapid divergence is caused by positive selection or if it is due to a relaxation of selective constraint. To distinguish between these two possibilities, we surveyed DNA sequence polymorphism in 91 Drosophila melanogaster genes with male-, female-, or nonsex-biased expression and determined their divergence from the sister species D. simulans. Using several single- and multilocus statistical tests, we estimated the type and strength of selection influencing the evolution of the proteins encoded by genes of each expression class. Adaptive evolution, as indicated by a relative excess of nonsynonymous divergence between species, was common among the sex-biased genes (both male and female). Male-biased genes, in particular, showed a strong and consistent signal of positive selection, while female-biased genes showed more variation in the type of selection they experience. Genes expressed equally in the two sexes, in contrast, showed no evidence for adaptive evolution between D. melanogaster and D. simulans. This suggests that sexual selection and intersexual coevolution are the major forces driving genetic differentiation between species.  相似文献   

11.
Pal Bhadra M  Bhadra U  Birchler JA 《Genetics》2006,174(3):1151-1159
A major model system for the study of evolutionary divergence between closely related species has been the unisexual lethality resulting from reciprocal crosses of Drosophila melanogaster and D. simulans. Sex-lethal (Sxl), a critical gene for sex determination, is misregulated in these hybrids. In hybrid males from D. melanogaster mothers, there is an abnormal expression of Sxl and a failure of localization of the male-specific lethal (MSL) complex to the X chromosome, which causes changes in gene expression. Introduction of a Sxl mutation into this hybrid genotype will allow expression of the MSL complex but there is no sequestration to the X chromosome. Lethal hybrid rescue (Lhr), which allows hybrid males from this cross to survive, corrects the SXL and MSL defects. The reciprocal cross of D. simulans mothers by D. melanogaster males exhibits underexpression of Sxl in embryos.  相似文献   

12.
A repeating unit of the histone gene cluster from Drosophila simulans containing the H1, H2A, H2B and H4 genes (the H3 gene region has already been analyzed) was cloned and analyzed. A nucleotide sequence of about 4.6 kbp was determined to study the nucleotide divergence and molecular evolution of the histone gene cluster. Comparison of the structure and nucleotide sequence with those of Drosophila melanogaster showed that the four histone genes were located at identical positions and in the same directions. The proportion of different nucleotide sites was 6.3% in total. The amino acid sequence of H1 was divergent, with a 5.1% difference. However, no amino acid change has been observed for the other three histone proteins. Analysis of the GC contents and the base substitution patterns in the two lineages, D. melanogaster and D. simulans, with a common ancestor showed the following. 1) A strong negative correlation was found between the GC content and the nucleotide divergence in the whole repeating unit. 2) The mode of molecular evolution previously found for the H3 gene was also observed for the whole repeating unit of histone genes; the nucleotide substitutions were stationary in the 3' and spacer regions, and there was a directional change of the codon usage to the AT-rich codons. 3) No distinct difference in the mode or pattern of molecular evolution was detected for the histone gene repeating unit in the D. melanogaster and D. simulans lineages. These results suggest that selectional pressure for the coding regions of histones, which eliminate A and T, is less effective in the D. melanogaster and D. simulans lineages than in the other GC-rich species.  相似文献   

13.
Centromeres require specialized nucleosomes; however, the mechanism of localization is unknown. Drosophila sp. centromeric nucleosomes contain the Cid H3-like protein. We have devised a strategy for identifying elements within Cid responsible for its localization to centromeres. By expressing Cid from divergent Drosophila species fused to green fluorescent protein in Drosophila melanogaster cells, we found that D. bipectinata Cid fails to localize to centromeres. Cid chimeras consisting of the D. bipectinata histone fold domain (HFD) replaced with segments from D. melanogaster identified loop I of the HFD as being critical for targeting to centromeres. Conversely, substitution of D. bipectinata loop I into D. melanogaster abolished centromeric targeting. In either case, loop I was the only segment capable of conferring targeting. Within loop I, we identified residues that are critical for targeting. Most mutations of conserved residues abolished targeting, and length reductions were deleterious. Taken together with the fact that H3 loop I makes numerous contacts with DNA and with the adaptive evolution of Cid, our results point to the importance of DNA specificity for targeting. We suggest that the process of deposition of (Cid.H4)2 tetramers allows for discriminating contacts to be made between loop I and DNA, providing the specificity needed for targeting.  相似文献   

14.
15.
I present data on the evolution of intron lengths among 3 closely related Drosophila species, D. melanogaster, Drosophila simulans, and Drosophila yakuba. Using D. yakuba as an outgroup, I mapped insertion and deletion mutations in 148 introns (spanning approximately 30 kb) to the D. melanogaster and D. simulans lineages. Intron length evolution in the 2 sister species has been different: in D. melanogaster, X-linked introns have increased slightly in size, whereas autosomal ones have decreased slightly in size; in D. simulans, both X-linked and autosomal introns have decreased in size. To understand the possible evolutionary causes of these lineage- and chromosome-specific patterns of intron evolution, I studied insertion-deletion (indel) polymorphism and divergence in D. melanogaster. Small insertion mutations segregate at elevated frequencies and enjoy elevated probabilities of fixation, particularly on the X chromosome. In contrast, there is no detectable X chromosome effect on fixations in D. simulans. These findings suggest X chromosome-specific selection or biased gene conversion-gap repair favoring insertions in D. melanogaster but not in D. simulans. These chromosome- and lineage-specific patterns of indel substitution are not easily explained by existing general population genetic models of intron length evolution. Genomic data from D. melanogaster further suggest that the forces described here affect introns and intergenic regions similarly.  相似文献   

16.
17.
Sawamura K  Karr TL  Yamamoto MT 《Genetica》2004,120(1-3):253-260
Interspecific crosses between Drosophila melanogaster and Drosophila simulans usually produce sterile unisexual hybrids. The barrier preventing genetic analysis of hybrid inviability and sterility has been taken away by the discovery of a D. simulans strain which produces fertile female hybrids. D. simulans genes in the cytological locations of 21A1 to 22C1-23B1 and 30F3-31C5 to 36A2-7 have been introgressed into the D. melanogaster genetic background by consecutive backcrosses. Flies heterozygous for the introgression are fertile, while homozygotes are sterile both in females and males. The genes responsible for the sterility have been mapped in the introgression. The male sterility is caused by the synergistic effect of multiple genes, while the female sterility genes have been localized to a 170 kb region (32D2 to 32E4) containing 20 open reading frames. Thus, the female sterility might be attributed to a single gene with a large effect. We have also found that the Lethal hybrid rescue mutation which prevents the inviability of male hybrids from the cross of D. melanogaster females and D. simulans males cannot rescue those carrying the introgression, suggesting that D. simulans genes maybe non-functional in this hybrid genotype. The genes responsible for the inviability have not been separated from the female sterility genes by recombination.  相似文献   

18.
Presgraves DC 《Genetics》2003,163(3):955-972
The sterility and inviability of species hybrids is thought to evolve by the accumulation of genes that cause generally recessive, incompatible epistatic interactions between species. Most analyses of the loci involved in such hybrid incompatibilities have suffered from low genetic resolution. Here I present a fine-resolution genetic screen that allows systematic counting, mapping, and characterizing of a large number of hybrid incompatibility loci in a model genetic system. Using small autosomal deletions from D. melanogaster and a hybrid rescue mutation from D. simulans, I measured the viability of hybrid males that are simultaneously hemizygous for a small region of the D. simulans autosomal genome and hemizygous for the D. melanogaster X chromosome. These hybrid males are exposed to the full effects of any recessive-recessive epistatic incompatibilities present in these regions. A screen of approximately 70% of the D. simulans autosomal genome reveals 20 hybrid-lethal and 20 hybrid-semilethal regions that are incompatible with the D. melanogaster X. In further crosses, I confirm the epistatic nature of hybrid lethality by showing that all of the incompatibilities are rescued when the D. melanogaster X is replaced with a D. simulans X. Combined with information from previous studies, these results show that the number of recessive incompatibilities is approximately eightfold larger than the number of dominant ones. Finally, I estimate that a total of approximately 191 hybrid-lethal incompatibilities separate D. melanogaster and D. simulans, indicating extensive functional divergence between these species' genomes.  相似文献   

19.
Neutral and Non-Neutral Evolution of Drosophila Mitochondrial DNA   总被引:8,自引:4,他引:4  
D. M. Rand  M. Dorfsman    L. M. Kann 《Genetics》1994,138(3):741-756
To test hypotheses of neutral evolution of mitochondrial DNA (mtDNA), nucleotide sequences were determined for 1515 base pairs of the NADH dehydrogenase subunit 5 (ND5) gene in the mitochondrial DNA of 29 lines of Drosophila melanogaster and 9 lines of its sibling species Drosophila simulans. In contrast to the patterns for nuclear genes, where D. melanogaster generally exhibits much less nucleotide polymorphism, the number of segregating sites was slightly higher in a global sample of nine ND5 sequences in D. melanogaster (s = 8) than in the nine lines of D. simulans (s = 6). When compared to variation at nuclear loci, the mtDNA variation in D. melanogaster does not depart from neutral expectations. The ND5 sequences in D. simulans, however, show fewer than half the number of variable sites expected under neutrality when compared to sequences from the period locus. While this reduction in variation is not significant at the 5% level, HKA tests with published restriction data for mtDNA in D. simulans do show a significant reduction of variation suggesting a selective sweep of variation in the mtDNA in this species. Tests of neutral evolution based on the ratios of synonymous and replacement polymorphism and divergence are generally consistent with neutral expectations, although a significant excess of amino acid polymorphism within both species is localized in one region of the protein. The rate of mtDNA evolution has been faster in D. melanogaster than in D. simulans and the population structure of mtDNA is distinct in these species. The data reveal how different rates of mtDNA evolution between species and different histories of neutral and adaptive evolution within species can compromise historical inferences in population and evolutionary biology.  相似文献   

20.
Identical satellite DNA sequences in sibling species of Drosophila   总被引:4,自引:0,他引:4  
The evolution of simple satellite DNAs was examined by DNA-DNA hybridization of ten Drosophila melanogaster satellite sequences to DNAs of the sibling species, Drosophila simulans and Drosophila erecta. Seven of these repeat types are present in tandem arrays in D. simulans and each of the ten sequences is repeated in D. erecta. In thermal melts, six of the seven satellite sequences in D. simulans and seven of the ten sequences in D. erecta melted within 1 deg.C of the corresponding values in D. melanogaster. The remaining sequences melted within 3 deg.C of the homologous hybrids. Therefore, there is little or no alteration in those satellite sequences held in common, despite a period of about ten million years since the divergence of D. melanogaster and D. simulans from a common ancestor. Simple satellite sequences appear to be more highly conserved than coding regions of the genome, on a per nucleotide basis. Since multiple copies of three satellite sequences could not be detected in D. simulans yet are present in D. erecta, a species more distantly related to D. melanogaster than is D. simulans, these sequences show discontinuities in evolution. There were major quantitative variations between species, showing that satellite DNAs are prone to massive amplification or diminution events over timespans as short as those separating sibling species. In D. melanogaster, these sequences amount to 21% of the genome but only 5% in D. simulans and 0.4% in D. erecta. There was a general trend of lower abundance with evolutionary distance for most satellites, suggesting that the amounts of different satellite sequences do not vary independently during evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号