首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The enzyme soluble guanylyl cyclase (SGC) mediates physiological effects of the gaseous signalling molecule nitric oxide by generating the second messenger molecule cyclic-GMP (cGMP). Here we have demonstrated that SGC is expressed in photoreceptor cells of locust compound eyes. However, stimulation of SGC activity in the eyes was observed only in the dark, indicating that light may cause inhibition of SGC activity in locust photoreceptor cells. Because light causes elevation of cytosolic Ca2+ in insect photoreceptor cells, we investigated the involvement of Ca2+ in mediating the inhibitory effect of light on SGC activity in the locust eye. Light-adapted locust eyes incubated with Ca2+-free physiological saline displayed a similar level of stimulated SGC activity to that normally seen only in dark-adapted eyes. These data indicate for the first time that Ca2+ may regulate SGC activity in cells. Moreover, the dark dependence of SGC activity in the locust eye suggests that SGC and cGMP may participate in dark-adaptation mechanisms in insect photoreceptor cells.  相似文献   

2.
Ten-a is one of the two Drosophila proteins that belong to the Ten M protein family. This protein is a type Ⅱ transmembrane protein and is expressed mainly in the embryonic CNS, in the larval eye imaginal disc and in the compound eye of the pupa. Here, we investigate the role of ten-α during development of the compound eye by using the Gal4/ UAS system to induce ten-α overexpression in the developing eye. We found that overexpression of ten-α can perturb eye development during all stages examined. In an early stage, overexpression of ten-α in eye primordial cells caused small and rough eyes and interfered with photoreceptor cell recruitment, resulting in some ommatidia having fewer or extra photoreceptor cells. Conversely, ten-α overexpression daring ommatidial formation caused severe eye defects due to absence of many cellular components. Interestingly, overexpression of ten-α in the late stage developing ommatidial cluster affected the number of pigment cells, caused cone cells proliferation in many ommatidia, and caused some photoreceptor cell defects. These results suggest that ten-α may be a novel gene required for normal eye morphogenesis.  相似文献   

3.
The evolutionary conserved transmembrane protein Crumbs (Crb) regulates morphogenesis of photoreceptor cells in the compound eye of Drosophila and prevents light-dependent retinal degeneration. Here we examine the role of Crb in the ocelli, the simple eyes of Drosophila. We show that Crb is expressed in ocellar photoreceptor cells, where it defines a stalk membrane apical to the adherens junctions, similar as in photoreceptor cells of the compound eyes. Loss of function of crb disrupts polarity of ocellar photoreceptor cells, and results in mislocalisation of adherens junction proteins. This phenotype is more severe than that observed in mutant photoreceptor cells of the compound eye, and resembles more that of embryonic epithelia lacking crb. Similar as in compound eyes, crb protects ocellar photoreceptors from light induced degeneration, a function that depends on the extracellular portion of the Crb protein. Our data demonstrate that the function of crb in photoreceptor development and homeostasis is conserved in compound eyes and ocelli and underscores the evolutionarily relationship between these visual sense organs of Drosophila. The data will be discussed with respect to the difference in apico-basal organisation of these two cell types.  相似文献   

4.
A number of differences exists between the compound eyes of larval and adult rock lobsters, Panulirus longipes. The larval eye more closely resembles the apposition type of compound eye, in which retinula cells and rhabdom lie immediately below the cone cells. The adult eye, on the other hand, is a typical clear-zone photoreceptor in which cones and retinula cell layers are separated by a wide transparent region. The rhabdom of the larval eye, if cut longitudinally, exhibits a "banded" structure over its entire length; in the adult the banded part is confined to the distal end, and the rhabdom is tiered. Both eyes have in common an eighth, distally-located retinula cell, which possesses orthogonally-oriented microvilli, and a peculiar lens-shaped "crystal", which appears to focus light onto the narrow column of the distal rhabdom. Migration of screening pigment on dark-light adaptation is accompanied by changes in sensitivity and resolution of the eye. Retinula cells belonging to one ommatidium do not arrange into one single bundle of axons, but interweave with axons of four neighbouring facets in an extraordinarily regular fashion.  相似文献   

5.
Mutations in the Drosophila gene giant lens (gil) affect ommatidial development, photoreceptor axon guidance and optic lobe development. We have cloned the gene using an enhancer trap line. Molecular analysis of gil suggests that it encodes a secreted protein with an epidermal-growth-factor-like motif. We have generated mutations at the gil locus by imprecise excision of the enhancer trap P-element. In the absence of gil, additional photoreceptors develop at the expense of pigment cells, suggesting an involvement of gil in cell determination during eye development. In addition, gil mutants show drastic effects on photoreceptor axon guidance and optic lobe development. In wildtype flies, photoreceptor axons grow from the eye disc through the optic stalk into the larval brain hemisphere, where retinal innervation is required for the normal development of the lamina and distal medulla. The projection pattern of these axons in the developing lamina and medulla is highly regular and reproducible. In gil, photoreceptor axons enter the larval brain but fail to establish proper connections in the lamina or medulla. We propose that gil encodes a new type of signalling molecule involved in the process of axon pathfinding and cell determination in the visual system of Drosophila.  相似文献   

6.
7.
《Journal of morphology》2017,278(10):1421-1437
Salps are marine planktonic chordates that possess an obligatory alternation of reproductive modes in subsequent generations. Within tunicates, salps represent a derived life cycle and are of interest in considerations of the evolutionary origin of complex anatomical structures and life history strategies. In the present study, the eyes and brains of both the sexual, aggregate blastozooid and the asexual, solitary oozooid stage of Thalia democratica (Forskål, 1775 ) were digitally reconstructed in detail based on serial sectioning for light and transmission electron microscopy. The blastozooid stage of T. democratica possesses three pigment cup eyes, situated in the anterior ventral part of the brain. The eyes are arranged in a way that the optical axes of each eye point toward different directions. Each eye is an inverse eye that consists of two different cell types: pigment cells (pigc) and rhabdomeric photoreceptor cells (prcs). The oozooid stage of T. democratica is equipped with a single horseshoe‐shaped eye, positioned in the anterior dorsal part of the brain. The opening of the horseshoe‐shaped eye points anteriorly. Similar to the eyes of the blastozooid, the eye of the oozooid consists of pigment cells and rhabdomeric photoreceptor cells. The rhabdomeric photoreceptor cells possess apical microvilli that form a densely packed presumably photosensitive receptor part adjacent to the concave side of the pigc. We suggest correspondences of the individual eyes in the blastozooid stage to respective parts of the single horseshoe‐shaped eye in the oozooid stage and hypothesize that the differences in visual structures and brain anatomies evolved as a result of the aggregate life style of the blastozooid as opposed to the solitary life style of the oozooid.  相似文献   

8.
The compound eye of Drosophila is a reiterated pattern of 800 unit eyes known as ommatidia. In each ommatidium there are eight photoreceptor neurons (R1–R8) and an invariant number of accessory cells organized in a precise manner. In the developing eye, specification of cell fates is triggered by sequential inductive events mediated by cell-cell interactions. The R8 photoreceptor neuron is the first cell to differentiate and is thought to play a central role in the recruitment of the remaining photoreceptor cells. Our previous work demonstrated that mutations in the retina aberrant in pattern (rap) locus lead to abnormal pattern formation in the compound eye. Genetic mosaic experiments demonstrated that for normal retinal patterning to occur, rap gene function is required only in the photoreceptor cell R8. In this study we analyzed the R cell composition of developing as well as the adult eyes of rap mutants employing a variety of R cell specific markers. We show that in rap mutants, although some of the R8-specific markers show normal expression patterns, other aspects of the R8 cell differentiation are abnormal. In addition, the cells R1, R6, and R7 fail to differentiate properly in rap mutants. These results suggest that the rap gene encodes an R8-specific function that plays a role in the determination of the photoreceptor cells R1, R6, and R7. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Planarians can propagate asexually by fission and successive regeneration. During head regeneration, they again form a new pair of eyes, and sometimes supernumerary eyes. The positions of normal and supernumerary eyes and their regeneration abilities are expected to be highly relevant to the question of where and how the field to regenerate eyes is determined. In this study, spontaneously generated supernumerary eyes were classified into various types. In all cases, they were formed in the anterior part of the head. Enucleation of a normal eye elicited regeneration of a new eye; however, enucleation of a supernumerary eye did not. The supernumerary eyes were morphologically and functionally indistinguishable from the normal eyes, revealed by the studies of immunohistology and photophobic response, respectively. From the obtained results, we proposed a model of the eye regeneration field that changes its distribution spatiotemporally during regeneration. Immunohistological studies also showed that the optic nerves from the normal and supernumerary eyes ran independently, which might have implication about the nature of guidance cues for the optic nerves.  相似文献   

10.
Summary A new photoreceptor in the Copepoda is described. The organ, previously called Gicklhorn's organ (Elofsson, 1966a), is paired and is usually situated beneath the cuticle of the front. Each member of the pair consists of two cells. From the anterolateral position, two nerves lead to the lateral part of the brain. No connexion with the nauplius eye is found. Each cell of the organ has microvilli, two nuclei, dictyosomes, and large cisternae of the endoplasmic reticulum. Except for the binucleated condition, the cells closely resemble the retinula cells of the copepod nauplius eye.It is concluded that, because of its independent position, the new photoreceptor is not a detached part of the nauplius eye. As there are no accessory structures present and no missing links so far known, it is doubtful whether it can be regarded as a vestigial compound eye. The most plausible hypothesis is that the new presumed photoreceptor is an independent structure without connexions either with crustacean compound or nauplius eyes.If the function of the nauplius eye is considered by itself the improvement contributed by the new organ is probably modest because of its low level of organization. Some experimental evidence on light reception in Copepods points to a possible function in response to directed light.This work was supported by a grant from the Swedish Natural Science Research Council 2760-3.  相似文献   

11.
Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics   总被引:4,自引:0,他引:4  
During development of the adult Drosophila visual system, axons of the eight photoreceptors in each ommatidium fasciculate together and project as a single bundle towards the optic lobes of the brain. Within the brain, individual photoreceptor axons from each bundle then seek specific targets in distinct layers of the optic lobes. The axons of photoreceptors R1-R6 terminate in the lamina, while R7 and R8 axons pass through the lamina to terminate in separate layers of the medulla. To identify genes required for photoreceptor axon guidance, including those with essential functions during early development, we have devised a strategy for the simple and efficient generation of genetic mosaics in which mutant photoreceptor axons innervate a predominantly wild-type brain. In a large-scale saturation mutagenesis performed using this system, we recovered new alleles of the gene encoding the receptor tyrosine phosphatase PTP69D. PTP69D has previously been shown to function in the correct targeting of motor axons in the embryo and R1-R6 axons in the visual system. Here, we show that PTP69D is also required for correct targeting of R7 axons. Whereas mutant R1-R6 axons occasionally extend beyond their normal targets in the lamina, mutant R7 axons often fail to reach their targets in the medulla, stopping instead at the same level as the R8 axon. These targeting errors are difficult to reconcile with models in which PTP69D plays an instructive role in photoreceptor axon targeting, as previously proposed. Rather, we suggest that PTP69D plays a permissive role, perhaps reducing the adhesion of R1-R6 and R7 growth cones to the pioneer R8 axon so that they can respond independently to their specific targeting cues.  相似文献   

12.
A striking diversity of compound eye size and shape has evolved among insects. The number of ommatidia and their size are major determinants of the visual sensitivity and acuity of the compound eye. Each ommatidium is composed of eight photoreceptor cells that facilitate the discrimination of different colours via the expression of various light sensitive Rhodopsin proteins. It follows that variation in eye size, shape, and opsin composition is likely to directly influence vision. We analyzed variation in these three traits in D. melanogaster, D. simulans and D. mauritiana. We show that D. mauritiana generally has larger eyes than its sibling species, which is due to a combination of larger ommatidia and more ommatidia. In addition, intra- and inter-specific differences in eye size among D. simulans and D. melanogaster strains are mainly caused by variation in ommatidia number. By applying a geometric morphometrics approach to assess whether the formation of larger eyes influences other parts of the head capsule, we found that an increase in eye size is associated with a reduction in the adjacent face cuticle. Our shape analysis also demonstrates that D. mauritiana eyes are specifically enlarged in the dorsal region. Intriguingly, this dorsal enlargement is associated with enhanced expression of rhodopsin 3 in D. mauritiana. In summary, our data suggests that the morphology and functional properties of the compound eyes vary considerably within and among these closely related Drosophila species and may be part of coordinated morphological changes affecting the head capsule.  相似文献   

13.
Photoreceptors in the Drosophila eye project their axons retinotopically to targets in the optic lobe of the brain. The axons of photoreceptor cells R1-R6 terminate in the first optic ganglion, the lamina, while R7 and R8 axons project through the lamina to terminate in distinct layers of the second ganglion, the medulla. Here we report the identification of the gene brakeless (bks) and show that its function is required in the developing eye specifically for the lamina targeting of R1-R6 axons. In mosaic animals lacking bks function in the eye, R1-R6 axons project through the lamina to terminate in the medulla. Other aspects of visual system development appear completely normal: photoreceptor and lamina cell fates are correctly specified, R7 axons correctly target the medulla, and both correctly targeted R7 axons and mistargeted R1-R6 axons maintain their retinotopic order with respect to both anteroposterior and dorsoventral axes. bks encodes two unusually hydrophilic nuclear protein isoforms, one of which contains a putative C(2)H(2) zinc finger domain. Transgenic expression of either Bks isoform is sufficient to restore the lamina targeting of R1-R6 axons in bks mosaics, but not to retarget R7 or R8 axons to the lamina. These data demonstrate the existence of a lamina-specific targeting mechanism for R1-R6 axons in the Drosophila visual system, and provide the first entry point in the molecular characterization of this process.  相似文献   

14.
Adult stemmata are distinctive insect photoreceptors located on the posterior surfaces of the optic lobes. They originate as larval eyes that migrate inward during metamorphosis. We used a combination of light microscopy and in situ hybridization to examine their anatomical organization in the butterfly Vanessa cardui and to test for the presence of visual pigments, the light sensitive components of the visual transduction pathway. The bilateral cluster of six internal stemmata is located near the ventral edge of the lamina. They retain the dark screening pigment and overlying crystalline cones of the larval stemmata. We found two opsin mRNAs expressed in the stemmata that are also expressed, respectively, in UV-sensitive and green-sensitive photoreceptor cells in the compound eye. A third mRNA that is expressed in blue-sensitive photoreceptor cells of the compound eye was not expressed in the stemmata. Our results reinforce the idea that the adult stemmata are not merely developmental remnants of larval eyes, but remain functional, possibly as components of the circadian input channel.This work was supported by grants from the National Science Foundation to A.D.B. (IBN-0346765) and R.H.W (IBN-9874493).  相似文献   

15.
The compound eye of D. melanogaster is a reiterative pattern of facets, each containing eight photoreceptor cells in a precise arrangement. This pattern is established in the eye imaginal disc during the third larval instar. A wave of morphogenesis sweeps from posterior to anterior across the disc, leaving in its wake organized clusters of photoreceptor cells. We have used monoclonal antibodies to highlight pattern elements that are not readily observable by other techniques. Monoclonal antibodies can be used to identify the molecules associated with particular patterns, providing links between observable structures and the genes. As an example, we present the purification and N-terminal sequence of a glycoprotein antigen specific to photoreceptor cells and their axons.  相似文献   

16.
At the anterior rim of the first optic neuropile, or lamina, of the housefly's (Musca domestica) compound eye, the terminals of photoreceptors (R) innervate postsynaptic neurons in variable numbers to provide a continuous range of natural hypo- and hyperinnervations. Frequencies of photoreceptor synapses have been measured from quantitative electron microscopy on single sections of the lamina's unit synaptic modules, called cartridges. These are normally innervated by six photoreceptor terminals (6R cartridges). At the lamina's edge hypoinnervated cartridges (2R-5R) are found, whereas hyperinnervated cartridges (7R, 8R) are located at the equator between dorsal and ventral eye halves. In 2R cartridges each presynaptic terminal forms up to 1.5 times the normal, 6R cartridge number of synapses, thereby offsetting the reduced number of terminals and partially conserving the input upon the postsynaptic neurons. Thus the terminals have a reserve synaptogenic capacity never normally revealed. By comparison, terminals in 8R cartridges form about the same numbers of synapses as in "normal" eye regions, so that their postsynaptic neurons have a synaptic input increased by the extra number of terminals. The number of synapses formed between input terminals and target neurons is therefore not fixed but changes as a function of the total receptor terminal complement. The size of a photoreceptor terminal covaries to a certain extent with the number of its presynaptic sites; the spacing density of presynaptic sites over the terminals' surface in a 2R cartridge compared with an 8R cartridge increases far less (only 17%) than the increase in the number of sites (43%). The pair of postsynaptic cell interneurons in each 2R cartridge also shows a decrease in axonal diameter compared with those in 8R cartridges. Thus both the pre- and postsynaptic cells show size changes correlated with changes in their synaptic engagement.  相似文献   

17.
Summary The lateral rudimentary eye of Limulus polyphemus, the horseshoe crab, is located beneath the posterior border of the compound eye. It consists of a bipartite mass of guanophores and about 100 associated photoreceptor cells. These neurons, up to 150 in diameter, have standard attributes of arthropod retinula cells and send large, uninterrupted axons to the brain. Their cytoplasm contains conspicuous clumps of residual bodies and variable, but usually extensive, masses of glycogen and glycoprotein. Hence, these neurons are not neurosecretory in the strict sense, notwithstanding axonal transport of glycogen masses toward the brain. Efferent axons to the rudimentary eye terminate in synaptoid fashion on the axon hillock of sensory cells. Since the rudimentary eye does not transmit impulses to the brain, but is photosensitive, its function may reside in a metabolic responsiveness to long-term changes in illumination.This study constitutes publication No. 430 from the Oregon Regional Primate Research Center, supported by Grants FR00163 and EY00392 from the National Institutes of Health and by a Bop Hope Grant-in-Aid from Fight-for-Sight, Inc.The author wishes to thank Mrs. Audrey Griffin for patient and excellent technical assistance.  相似文献   

18.
Photoreceptor cell axons (R axons) innervate optic ganglia in the Drosophila brain through the tubular optic stalk. This structure consists of surface glia (SG) and forms independently of R axon projection. In a screen for genes involved in optic stalk formation, we identified Fak56D encoding a Drosophila homolog of mammalian focal adhesion kinase (FAK). FAK is a main component of the focal adhesion signaling that regulates various cellular events, including cell migration and morphology. We show that Fak56D mutation causes severe disruption of the optic stalk structure. These phenotypes were completely rescued by Fak56D transgene expression in the SG cells but not in photoreceptor cells. Moreover, Fak56D genetically interacts with myospheroid, which encodes an integrin beta subunit. In addition, we found that CdGAPr is also required for optic stalk formation and genetically interacts with Fak56D. CdGAPr encodes a GTPase-activating domain that is homologous to that of mammalian CdGAP, which functions in focal adhesion signaling. Hence the optic stalk is a simple monolayered structure that can serve as an ideal system for studying glial cell morphogenesis and the developmental role(s) of focal adhesion signaling.  相似文献   

19.
20.
The mutation ee often produces an ectopic eye on the vertex that is a mirror image partial duplication of the normal eye on the ipsilateral side of the head. The pattern of the duplication and a clonal analysis by mitotic recombination indicate that the duplications are of dorsal eye and orbital structures. Large ectopic eyes (more than 100 ommatidia) and their surrounding bristles may be produced without cuticular deficiencies. The penetrance of ee is temperature dependent with penetrance higher (72%) at 25 degrees and 29 degrees than at 19 degrees (43%). Temperature shift experiments show two temperature-sensitive periods: one at midembryogenesis, the other at mid-first larval instar. Microscopic examination of ee late-second and third instar imaginal cephalic discs show no indication of growth of the extra tissue needed to produce the duplication until after mid-third instar. This was confirmed by cell counts of ee and wild-type discs. There is no evidence of differential cell death in the two types of discs at this stage, although much earlier cell death is postulated. Tests for cell autonomy of the mutation by the production of morphogenetic clones suggest nonautonomy. Formation of pattern duplications by mutant genes is discussed in terms of cell death that eliminates whole developmental compartments, restricted cell death that occurs within a compartment, extensive cell death within a compartment and proliferative growth unassociated with cell lethality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号