首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using an IgG1 antibody as a model system, we have studied the mechanisms by which multidomain proteins aggregate at physiological pH when incubated at temperatures just below their lowest thermal transition. In this temperature interval, only minor changes to the protein conformation are observed. Light scattering consistently showed two coupled phases: an initial fast phase followed by several hours of exponential growth of the scattered intensity. This is the exact opposite of the lag‐time behavior typically observed in protein fibrillation. Dynamic light scattering showed the rapid formation of an aggregate species with a hydrodynamic radius of about 25 nm, which then increased in size throughout the experiment. Theoretical analysis of our light scattering data showed that the aggregate number density goes through a maximum in time providing compelling evidence for a coagulation mechanism in which aggregates fuse together. Both the analysis as well as size‐exclusion chromatography of incubated samples showed the actual increase in aggregate mass to be linear and reach saturation long before all molecules had been converted to aggregates. The CH2 domain is the only domain partly unfolded in the temperature interval studied, suggesting a pivotal role of this least stable domain in the aggregation process. Our results show that for multidomain proteins at temperatures below their thermal denaturation, transient unfolding of a single domain can prime the molecule for aggregation, and that the formation of large aggregates is driven by coagulation.  相似文献   

2.
Thermal denaturation and aggregation of beta(L)-crystallin from bovine lens have been studied using differential scanning calorimetry (DSC) and dynamic light scattering (DLS). According to the DLS data, the distribution of the beta(L)-crystallin aggregates by their hydrodynamic radius (R(h)) remains monomodal to the point of precipitating aggregates (sodium phosphate, pH 6.8; 100 mM NaCl; 60 degrees C). The size of the start aggregates (R(h,0)) and duration of the latent stage (t(0)) leading to the formation of the start aggregates have been determined from the light scattering intensity versus the hydrodynamic radius plots and the dependences of R(h) on time. The R(h,0) value remains constant at variation of the beta(L)-crystallin concentration, whereas the t(0) value increases with diminishing beta(L)-crystallin concentration. The suppression of beta(L)-crystallin aggregation by alpha-crystallin is connected with the decrease in the R(h,0) value and increase in the t(0) value. In the presence of alpha-crystallin the aggregate population is split into two components. The first component is represented by stable aggregates whose size remains constant in time. The aggregates of the other kind grow until they reach the size characteristic of aggregates prone to precipitation. The DSC data show that alpha-crystallin has no appreciable influence on thermal denaturation of beta(L)-crystallin.  相似文献   

3.
The pH-induced change in the structure and aggregation state of the PR-8 and X-31 strains of intact human influenza virus has been studied in vitro. Reducing the pH from 7.4 to 5.0 produces a large increase in the intensity of light scattered to low angles. A modest increase in the polydispersity parameter from cumulants fits to the dynamic light scattering correlograms accompanies the increase, as does a change in how that parameter varies with scattering angle. These trends imply that the virus particles are not uniform, even at pH 7.4, and tend to aggregate as pH is reduced. The scattering profiles (angular dependence of intensity) never match those of isolated, spherical particles of uniform size, but the deviations from that simple model remain modest at pH 7.4. At pH 5.0, scattering profiles calculated for aggregates of uniformly sized spheres come much closer to matching the experimental data than those computed for isolated particles. Although these observations indicate that acid-induced aggregation develops over a period of minutes to hours after acidification, a nearly instantaneous increase in hydrodynamic size is the first response of intact virus particles to lower pH.  相似文献   

4.
Thermal denaturation and aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been studied using differential scanning calorimetry (DSC), dynamic light scattering (DLS), and analytical ultracentrifugation. The maximum of the protein thermal transition (T(m)) increased with increasing the protein concentration, suggesting that the denaturation process involves the stage of reversible dissociation of the enzyme tetramer into the oligomeric forms of lesser size. The dissociation of the enzyme tetramer was shown by sedimentation velocity at 45 degrees C. The DLS data support the mechanism of protein aggregation that involves a stage of the formation of the start aggregates followed by their sticking together. The hydrodynamic radius of the start aggregates remained constant in the temperature interval from 37 to 55 degrees C and was independent of the protein concentration (R(h,0) approximately 21 nm; 10 mM sodium phosphate, pH 7.5). A strict correlation between thermal aggregation of GAPDH registered by the increase in the light scattering intensity and protein denaturation characterized by DSC has been proved.  相似文献   

5.
The in vitro reassembled species of OmpF porin, which was renatured from its denatured monomer using n-octyl-β-D-glucopyranoside, was characterized by low-angle laser light scattering photometry, circular dichroism spectroscopy and synchrotron radiation small-angle X-ray scattering measurements. The light scattering measurement reconfirmed that the reassembled species was the dimer of the protein. Circular dichroism spectra of the reassembled dimer showed a native-like β-structure. A small-angle X-ray scattering measurement indicated that the size of the reassembled dimer was nearly equal to that of the native trimer under the present experimental conditions. In a thermal denaturation experiment followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the reassembled dimer was less stable than the native trimer.  相似文献   

6.
Studies of molecular mechanisms of chaperone-like activity of alpha-crystallin became an active field of research over last years. However, fine interactions between alpha-crystallin and the damaged protein and their complex organization remain largely uncovered. Complexation between alpha- and betaL-crystallins was studied with thermal denaturation of betaL-crystallin at 60 degrees C using small-angle X-ray scattering (SAXS), light scattering, gel-permeation chromatography and electrophoresis. A mixed solution of alpha- and betaL-crystallins in concentrations about 10 mg/ml incubated at 60 degrees C was found to contain their soluble complexes with mean radius of gyration approximately 14 nm, mean molecular weight approximately 4000 kDA and maximal size approximately 40 nm. In pure betaL-crystallin solution, complexes were not observed at 60 degrees C. In SAXS studies, transitions in the alpha-crystallin quaternary structure at 60 degrees C were shown to occur and result in a double increase of the molecular weight. It suggests that during the temperature-induced denaturation of betaL-crystallin it binds with modified alpha-crystallin or, alternatively, alpha-betaL-crystallin complexation and alpha-crystallin modifications are concurrent. Estimates of the alpha-betaL-crystallin dimensions and relative contents of alpha- and betaL-crystallins in the complex suggest that several alpha-crystallin molecules are involved in complex formation.  相似文献   

7.
Lipopolysaccharide-protein complex isolated from Yersinia pseudotuberculosis forms aggregates in aqueous solutions. Dissociation of aggregates was found by light scattering method for 1 M sodium chloride, 1 M guanidine chloride, and urea solutions. Very large particles were detected also in these solutions and acid media. Little light scattering alterations have been observed for 0.27 g/l solution, and pronounced effect of temperature has been detected for more diluted solutions.  相似文献   

8.
The effects of hydrostatic pressure on the extracellular hemoglobin of Glossoscolex paulistus were investigated by studies of light scattering, intrinsic protein fluorescence, filtration chromatography, and oxygen binding. Pressure promoted a large decrease of light scattering consistent with the dissociation of the hemoglobin. Pressures up to 1.7 kbar caused dissociation with reversibility of the light scattering and fluorescence properties after return to atmospheric pressure. Higher pressures provoked additional dissociation with increasing loss of reversibility. After complete dissociation by incubation at 2.5 kbar followed by decompression, the protein continued mostly dissociated. The dissociated forms were distributed in two populations as based on size exclusion chromatography, one corresponding to small dissociated units (average Mr = 33,000) and the other population corresponding to the one-twelfth subunit (260,000 Mr). The pressure dissociation curves showed no significant dependence on protein concentration suggesting that the native hemoglobin population exists in a distribution of free-energies of association. Both the decrease of concentration dependence and the loss of ability to reassemble seem to increase with the complexity and size of the protein aggregate. These findings permit the conclusion that increased heterogeneity of free-energies of association with the size of the aggregate may result in the molecular individuality of large protein complexes such as subcellular particles and viruses.  相似文献   

9.
Fixed lymphocytes from mouse lymphatic nodules were treated on histological preparations with sodium chloride solutions of varying molarity. The extracts were investigated electrophoretically and were found to contain all histone fractions after treatment with 1.5 M NaCl solution and only the histone F1 after treatment with 0.6 M solution. The cytochemical properties of the cells with histones removed were investigated. The experiments showed that histone removal resulted in a marked increase of nucleic capacity to bind AO, and in a significant decrease of DNP thermal stability of these cells in denaturation test. To establish the role played by histone F1 in the course of cell activation this histone was removed from lymphocytes in states of different activity. The experiments showed that after treatment with 0.6 M sodium chloride the difference in AO-binding of cells in states of different activity disappeared. The data obtained confirm the hypothesis about histone-DNA separation at early stages of chromatin activation and suggest that the early change in physico-chemical properties of chromatin are connected with the separation of lysine-rich histone F1.  相似文献   

10.
GroE facilitates refolding of citrate synthase by suppressing aggregation.   总被引:21,自引:0,他引:21  
The molecular chaperone GroE facilitates correct protein folding in vivo and in vitro. The mode of action of GroE was investigated by using refolding of citrate synthase as a model system. In vitro denaturation of this dimeric protein is almost irreversible, since the refolding polypeptide chains aggregate rapidly, as shown directly by a strong, concentration-dependent increase in light scattering. The yields of reactivated citrate synthase were strongly increased upon addition of GroE and MgATP. GroE inhibits aggregation reactions that compete with correct protein folding, as indicated by specific suppression of light scattering. GroEL rapidly forms a complex with unfolded or partially folded citrate synthase molecules. In this complex the refolding protein is protected from aggregation. Addition of GroES and ATP hydrolysis is required to release the polypeptide chain bound to GroEL and to allow further folding to its final, active state.  相似文献   

11.
The stability of calf skin collagen (CSC) type I during thermal and chemical denaturation in the presence of glycerol was investigated. Thermal denaturation of type I collagen was performed in the presence of glycerol or in combination with urea and sodium chloride. The denaturation curves obtained in the presence of urea or sodium chloride retained their original shape without glycerol. These curves were shifted upward proportionally to the glycerol concentration in the reaction medium. This means that glycerol and the denaturants act independently. The explanation is based on the difference in the mechanism of their action on the collagen molecule.  相似文献   

12.
A static light scattering (SLS) study of bovine serum albumin (BSA) mixtures with two anionic graft copolymers of poly(sodium acrylate-co-sodium 2-acrylamido-2-methyl-1-propanesulphonate)-graft-poly(N,N-dimethylacrylamide), with a high composition in poly(N,N-dimethylacrylamide) (PDMAM) side chains, revealed the formation of oppositely charged complexes, at pH lower than 4.9, the isoelectric point of BSA. The core-corona nanoparticles formed at pH = 3.00 were characterized. Their molecular weight and radius of gyration were determined by SLS, while their hydrodynamic radius was determined by dynamic light scattering. Small angle neutron scattering measurements were used to determine the radius of the insoluble complexes, comprising the core of the particles. The values obtained indicated that their size and aggregation number of the nanoparticles were smaller when the content of the graft copolymers in neutral PDMAM side chains was higher. Such particles should be interesting drug delivery candidates, if the gastrointestinal tract was to be used.  相似文献   

13.
Effect of recombinant chicken small heat shock protein with molecular mass 24 kDa (Hsp24) and recombinant human small heat shock protein with molecular mass 27 kDa (Hsp27) on the heat-induced denaturation and aggregation of skeletal F-actin was analyzed by means of differential scanning calorimetry and light scattering. All small heat shock proteins did not affect thermal unfolding of F-actin measured by differential scanning calorimetry, but effectively prevented aggregation of thermally denatured actin. Small heat shock protein formed stable complexes with denatured (but not with intact) F-actin. The size of these highly soluble complexes was smaller than the size of intact F-actin filaments. It is supposed that protective effect of small heat shock proteins on the cytoskeleton is at least partly due to prevention of aggregation of denatured actin.  相似文献   

14.
Biological self-assembly process of tropoelastin in an extracellular space, viewed as a key step of the elastogenesis, can be mimicked by the temperature-dependent coacervation of the elastin-related polypeptide-water system. Early and late stages of the phase separation behavior of the bovine neck ligamental alpha-elastin-water system were examined respectively by the laser light scattering photometry and phase contrast microscopy. Changes in the hydrodynamic size of molecular assemblies and visible microcoacervate droplet size were traced as a function of the concentration of alpha-elastin and temperature. Near the critical point, alpha-elastin concentration of 0.11 mg/mL and temperature of 21.5 degrees C, the phase separation was initiated after fast increase of the hydrodynamic size of primary aggregates as scattering particles and followed by the appearance of larger microcoacervate droplets with a broad size distribution. Whereas in the off-critical region, slow decrease of the hydrodynamic size of primary particles induced phase separation with smaller droplets of a narrow size distribution. Observation of the phase separation processes in the alpha-elastin-water system with metal chlorides and hydrophobic synthetic model polypeptide-water system indicated that the fast and slow molecular assembly processes were based on the fundamental hydrophobic interactions and involvements of electrostatic interactions between charged amino acid residues, respectively.  相似文献   

15.
Thermal aggregation of rabbit skeletal muscle glycogen phosphorylase b (Phb) has been investigated using dynamic light scattering under conditions of a constant rate of temperature increase (1 K/min). The linear behavior of the dependence of the hydrodynamic radius on temperature for Phb aggregation is consistent with the idea that thermal aggregation of proteins proceeds in the kinetic regime wherein the rate of aggregation is limited by diffusion of the interacting particles (the regime of "diffusion-limited cluster-cluster aggregation"). In the presence of alpha-crystallin, a protein exhibiting chaperone-like activity, the dependence of the hydrodynamic radius on temperature follows the exponential law; this suggests that the aggregation process proceeds in the kinetic regime where the sticking probability for colliding particles becomes lower than unity (the regime of "reaction-limited cluster-cluster aggregation"). Based on analysis of the ratio between the light scattering intensity and the hydrodynamic radius of Phb aggregates, it has been concluded that the addition of alpha-crystallin results in formation of smaller size starting aggregates. The data on differential scanning calorimetry indicate that alpha-crystallin interacts with the intermediates of the unfolding process of the Phb molecule. The proposed scheme of thermal denaturation and aggregation of Phb includes the stage of reversible dissociation of dimers of Phb into monomers, the stage of the formation of the starting aggregates from the denatured monomers of Phb, and the stage of the sticking of the starting aggregates and higher order aggregates. Dissociation of Phb dimer into monomers at elevated temperatures has been confirmed by analytical ultracentrifugation.  相似文献   

16.
The molecular properties of the haemagglutinin of Ricinus communis (RCA I or RCA 120) were evaluated by analytical ultracentrifugation, light-scattering, c.d. and fluorescence. The native molecule had a fairly expanded structure (f/f0 = 1.43) and dissociated into two subunits of equal size in 6 M-guanidinium chloride. This native structure was stable in alkali (up to pH 11) and resistant to thermal denaturation at neutrality. A pH-triggered change in the haemagglutinin conformation was observed and characterized by analytical ultracentrifugation, c.d. and fluorescence between pH 7 and 4.5, the range in which its affinity for galactosides decreased [Yamasaki, Absar & Funatsu (1985) Biochim, Biophys. Acta 828, 155-161]. These results are discussed in relation to those reported in the literature for other lectins and more especially ricin, for which a pH-dependent conformation transition has been observed in the same range of low pH.  相似文献   

17.
In this paper, we reported a new method to prepare whey protein microparticles via high-intensity ultrasound disruption. Particles morphology was characterized by confocal microscopy, and their size and distribution were analyzed by light scattering technique. Starting whey protein isolate (WPI) exhibited changes in size and distribution according to its concentration. For WPI, 7.5% (w/w) mean size was 0.7 μm, and upon sonication at ambient temperature, the size was reduced up to 0.2 μm showing the particles a rounded morphology. Sonication at room temperature of gelled WPI led to particles with sizes between 0.1 and 10 μm which had a tendency to flocculate. When WPI was submitted to sonication under heating at protein denaturation temperature, different effects were observed according to protein concentration. The particle size was reduced for the lowest WPI concentration (7.5 wt.%), did not change at 9 wt.%, but strongly increased at 12 wt.%, in comparison with the untreated sample. WPI particles of desired size in the micron range may be obtained either by sonication of gelled WPI or by sonication under heating at denaturation temperature by controlling processing variables.  相似文献   

18.
Multichain aggregates together with individual macromolecules were detected by light scattering in dilute aqueous solutions of chitosan and of its hydrophobic derivatives bearing 4 mol % of n-dodecyl side groups. It was demonstrated that the size of aggregates and their aggregation numbers increase at the introduction of hydrophobic side groups into polymer chains. The key result concerns the effect of the chain length of individual macromolecules on the aggregation behavior. It was shown that for both unmodified and hydrophobically modified (HM) chitosan, the size of aggregates is independent of the length of single chains, which may result from the electrostatic nature of the stabilization of aggregates. At the same time, the number of macromolecules in one aggregate increases significantly with decreasing length of single chains to provide a sufficient number of associating groups to stabilize the aggregate. The analysis of the light scattering data together with TEM results suggests that the aggregates of chitosan and HM chitosan represent spherical hydrogel particles with denser core and looser shell covered with dangling chains.  相似文献   

19.
The aim of our study was to investigate how denaturing agents commonly used in protein analysis influence the labeling between a reactive molecule and proteins. For this reason, we investigated the labeling of ovalbumin (OVA) as a globular model protein with p-hydroxymercurybenzoate (pHMB) in its native state (phosphate buffer solution) and in different denaturing conditions (8 mol L−1 urea, 3 mol L−1 guanidinium thiocyanate, 6 mol L−1 guanidinium chloride, 0.2% sodium dodecyl sulfate, and 20% methanol). In addition to chemical denaturation, thermal denaturation was also tested. The protein was pre-column simultaneously denatured and derivatized, and the pHMB-labeled denatured OVA complexes were analyzed by size exclusion chromatography (SEC) coupled online with chemical vapor generation–atomic fluorescence spectrometry (CVG–AFS). The number of –SH groups titrated greatly depends on the protein structure in solution. Indeed, we found that, depending on the adopted denaturing conditions, OVA gave different aggregate species that influence the complexation process. The results were compared with those obtained by a common alternative procedure for the titration of –SH groups that employs monobromobimane (mBBr) as tagging molecule and molecular fluorescence spectroscopy as detection technique.  相似文献   

20.
Conversion of the rod-like tobacco mosaic virus (TMV) virions into “ball-like particles” by thermal denaturation at 90–98?°C had been described by R.G. Hart in 1956. We have reported recently that spherical particles (SPs) generated by thermal denaturation of TMV at 94–98?°C were highly stable, RNA-free, and water-insoluble. The SPs were uniform in shape but varied widely in size (53–800?nm), which depended on the virus concentration. Here, we describe some structural characteristics of SPs using circular dichroism, fluorescence spectroscopy, and Raman spectroscopy. It was found that the structure of SPs protein differs strongly from that of the native TMV and is characterized by coat protein subunits transition from mainly (about 50%) α-helical structure to a structure with low content of α-helices and a significant fraction of β-sheets. The SPs demonstrate strong reaction with thioflavin T suggesting the formation of amyloid-like structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号