首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the effect of ionic strength on the kinetics of heat-induced fibrilar aggregation of bovine beta-lactoglobulin at pH 2.0. Using in situ light scattering we find an apparent critical protein concentration below which there is no significant fibril formation for all ionic strengths studied. This is an independent confirmation of our previous observation of an apparent critical concentration for 13 mM ionic strength by proton NMR spectroscopy. It is also the first report of such a critical concentration for the higher ionic strengths. The critical concentration decreases with increasing ionic strength. Below the critical concentration mainly "dead-end" species that cannot aggregate anymore are formed. We prove that for the lowest ionic strength this species consists of irreversibly denatured protein. Atomic force microscopy studies of the morphology of the fibrils formed at different ionic strengths show shorter and curvier fibrils at higher ionic strength. The fibril length distribution changes non-monotonically with increasing ionic strength. At all ionic strengths studied, the fibrils had similar thicknesses of about 3.5 nm and a periodic structure with a period of about 25 nm.  相似文献   

2.
Ultrafast primary processes in the trimeric photosystem I core antenna-reaction center complex of the cyanobacterium Synechocystis sp. PCC 6803 have been examined in pump-probe experiments with approximately 100 fs resolution. A global analysis of two-color profiles, excited at 660 nm and probed at 5 nm intervals from 650 to 730 nm, reveals 430 fs kinetics for spectral equilibration among bulk antenna chlorophylls. At least two lifetime components (2.0 and 6.5 ps in our analysis) are required to describe equilibration of bulk chlorophylls with far red-absorbing chlorophylls (>700 nm). Trapping at P700 occurs with 24-ps kinetics. The multiphasic bulk left arrow over right arrow red equilibration kinetics are intriguing, because prior steady-state spectral studies have suggested that the core antenna in Synechocystis sp. contains only one red-absorbing chlorophyll species (C708). The disperse kinetics may arise from inhomogeneous broadening in C708. The one-color optical anisotropy at 680 nm (near the red edge of the bulk antenna) decays with 590 fs kinetics; the corresponding anisotropy at 710 nm shows approximately 3.1 ps kinetics. The latter may signal equilibration among symmetry-equivalent red chlorophylls, bound to different monomers within trimeric photosystem I.  相似文献   

3.
Upon laser flash photolysis of β-carotene in chloroform instantaneous bleaching of β-carotene and concomitant formation of near infrared absorbing species are observed. One species, absorbing with maximum at 920 nm, is formed during the laser pulse (10 ns) and is practically gone in one millisecond, the decay showing a bi-exponential behaviour. The second species, absorbing with maximum at 1000 nm, is formed from the species absorbing at 920 nm by first order kinetics with a rate constant of 4.9·104 s-1 at 20°C. This second species decays by second order kinetics and is gone within a few milliseconds. An additional slow bleaching of β-carotene and formation of the species absorbing at 920 nm is observed. This slow bleaching/formation of transient absorption is probably due to processes involving free radicals generated during the instantaneous bleaching. The species absorbing at 920 nm is suggested to be either (i) a free radical adduct formed from β-carotene and chloroform or (ii) β-carotene after abstraction of a hydrogen atom. The species absorbing at 1000 nm is most likely the radical cation. Formation and decay of the near infrared absorbing species and bleaching of β-carotene are independent of whether oxygen is present or absent in the solutions.  相似文献   

4.
Femtosecond absorption spectroscopy was applied to study for the first time excitation dynamics in isolated photosystem I trimers from Arthrospira platensis, which display extremely long-wavelength absorption peaks. Pump–probe spectra observed at 77 K in the timescale of dozens of picoseconds upon 70-fs excitation revealed two maxima near 710 and 730 nm, which correspond to red chlorophyll forms. Bleaching at 680 nm developed in ∼200 fs, whereas the bleaching kinetics at 710 and 730 nm exhibited two components with time constants of 1 and 5.5 ps. Comparison of the kinetics of bleaching development at 710 nm and 730 nm with that of bleaching decay at 680 nm indicated that both long-wavelength forms of trimers are populated mainly via direct energy transfer from bulk chlorophyll.  相似文献   

5.
Yellow fluorescent protein (YFP 10C) is widely used as a probe in biology, but its complex photochemistry gives rise to unusual behavior that requires fuller definition. Here we characterize the kinetics of protonation and reversible bleaching over time scales of picoseconds to hours. Stopped-flow and pressure-jump techniques showed that protonation of the fluorescent YFP(-) anion state is two-step with a slow transition that accounts for blinking of 527 nm emission at the single molecule level on the seconds time scale. Femtosecond spectroscopy revealed that the protonated excited-state (YFPH*) decayed predominantly by a radiationless mechanism, but emission at 460 nm was detected within the first picosecond. Limited excited-state proton transfer leads to 527 nm emission characteristic of the YFP(-*) anion. Prolonged continuous wave illumination at the peak of YFP(-) absorbance (514 nm) yields, irreversibly, a weakly fluorescent product that absorbs at 390 nm. This "photobleaching" process also gives a different species (YFPHrb) that absorbs at 350/430 nm and spontaneously regenerates YFP(-) in the dark on the time scale of hours but can be photoactivated by UV light to regenerate YFP(-) within seconds, via a ground-state protonated intermediate. Using a pulsed laser for photobleaching resulted in decarboxylation of YFP as indicated by the mass spectrum. These observations are accounted for in a unifying kinetic scheme.  相似文献   

6.
The reactions of nitrite and oxygen with the cytochrome d oxidase of Escherichia coli were studied, following growth of cells on glycerol with fumarate as respiratory oxidant. Optical difference spectroscopy was used to investigate the kinetics of product formation during the reaction of the respiratory chain with nitrite. Two kinetically distinct species were formed in the reaction with nitrite; these had spectral features at 438 nm and 630 nm. These observations indicate that the cytochrome d does not contribute significantly to absorbance in the Soret region, and that changes elicited by ligand binding in the Soret region are largely attributable to haemoprotein b-590. Inhibition of respiratory oxidase activity by nitrite was also investigated. The inhibition was competitive with oxygen (Ki 0.83 mM, pH 7), which allowed analysis of the reaction of the oxidase with oxygen itself. The reaction with oxygen was cooperative with an apparent number of oxygen-binding sites, n, of 1.26 at pH 7, increasing to 1.72 at pH 6. We propose a model for the oxidase in which there are two ligand-binding sites.  相似文献   

7.
The kinetics and thermodynamics of the reaction of mixed valence state membrane-bound cytochrome oxidase with CO over the 178-203 K range has been studied by multichannel optical spectroscopy at three wavelength pairs (444-463 nm in the Soret region, and 590-630 and 608-630 nm in the alpha region) and analysed by non-linear optimization techniques. As in the case of the fully reduced membrane-bound cytochrome oxidase-CO reaction (Clore, G.M. and Chance, E.M. (1978) Biochem J. 175, 709-725), the normalized progress curves at the three wavelength pairs are significantly different indicating, on the basis of Beer's law, the presence of a minimum of three optically distinct species. The only model that satisfies the triple statistical requirement of a standard deviation within the standard error of the data, a random distribution of residuals and good determination of the optimized parameters, is a two species sequential mechanism: flash photolysis of the mixed valence state cytochrome oxidase-CO complex (species IIMC) yields unliganded mixed valence state cytochrome oxidase (species EM) and free CO which then recombine to form species IMC; species IMC is then converted into species IIMC. All the thermodynamic parameters describing the model are calculated and compared to those obtained for the fully reduced membrane-bound cytochrome oxidase-CO reaction (Clore and Chance (1978) Biochem. J. 175, 709-725). Although there are some qualitative similarities in the kinetics and thermodynamics of the reactions of mixed valence state (alpha 23+Cu+B.ALPHA 3+Cu2+A) and fully reduced (a3 2+Cu B + . a2+Cu A+) cytochrome oxidase with CO, there are large and significant quantitative differences in zero-point activation energies and frequency factors; over the temperature range studied, the mixed valence state cytochrome oxidase-CO reaction is found to proceed at a significantly slower rate than the fully reduced cytochrome oxidase-CO reaction. These differences indicate that changing the valence states of cytochrome a and CuA has a significant effect on the CO binding properties of cytochrome a 3 and possibly CuB.  相似文献   

8.
The reaction of mixed-valence state membrane-bound cytochrome oxidase with oxygen has been studied by difference spectroscopy with reference to the unliganded state and by the low temperature technique of Chance and coworkers. Three intermediates, compound A2 and two compound C-type components denoted C606 and C610, have been resolved in time and wavelength in the alpha region. Their optical properties are defined in the visible range. Compound A2 disappearance and compound C606 formation exhibit first-order kinetics with identical rate constants: 2.4 . 10(-3) s-1 at -94 degrees C. Compound A2 has its alpha band maximum at 590 nm and shares an isosbestic point at 595 nm with the C606 species. The alpha band of this intermediate peaks at 606 nm. Compound C610 is the real end point of the reaction and its alpha band maximum appears at 610 nm. Compound C606 is interpreted as resulting from the transfer of one electron from heme alpha 3 copper to oxygen and compound C610 as expressing a molecular reorganization due to the effect of the temperature. Structural requirements for the location of CuB in the active site are discussed. It is concluded that the three observed compounds are the only intermediates formed in the reaction between oxygen and mixed-valence state membrane-bound cytochrome oxidase.  相似文献   

9.
Ultrafast laser spectroscopy techniques are used to measure the low-frequency vibrational coherence spectra and nitric oxide rebinding kinetics of Caldariomyces fumago chloroperoxidase (CPO). Comparisons of the CPO coherence spectra with those of other heme species are made to gauge the protein-specific nature of the low-frequency spectra. The coherence spectrum of native CPO is dominated by a mode that appears near 32-33 cm(-1) at all excitation wavelengths, with a phase that is consistent with a ground-state Raman-excited vibrational wavepacket. On the basis of a normal coordinate structural decomposition (NSD) analysis, we assign this feature to the thiolate-bound heme doming mode. Spectral resolution of the probe pulse ("detuned" detection) reveals a mode at 349 cm(-1), which has been previously assigned using Raman spectroscopy to the Fe-S stretching mode of native CPO. The ferrous species displays a larger degree of spectral inhomogeneity than the ferric species, as reflected by multiple shoulders in the optical absorption spectra. The inhomogeneities are revealed by changes in the coherence spectra at different excitation wavelengths. The appearance of a mode close to 220 cm(-1) in the coherence spectrum of reduced CPO excited at 440 nm suggests that a subpopulation of five coordinated histidine-ligated hemes is present in the ferrous state at a physiologically relevant pH. A significant increase in the amplitude of the coherence signal is observed for the resonance with the 440 nm subpopulation. Kinetics measurements reveal that nitric oxide binding to ferric and ferrous CPO can be described as a single-exponential process, with rebinding time constants of 29.4 +/- 1 and 9.3 +/- 1 ps, respectively. This is very similar to results previously reported for nitric oxide binding to horseradish peroxidase.  相似文献   

10.
Mechanism of K+-induced actin assembly   总被引:14,自引:6,他引:8       下载免费PDF全文
The assembly of highly purified actin from Dictyostelium discoideum amoebae and rabbit skeletal muscle by physiological concentrations of KCI proceeds through successive stages of (a) rapid formation of a distinct monomeric species referred to as KCI-monomer, (b) incorporation of KCI-monomers into an ATP-containing filament, and (c) ATP hydrolysis that occurs significantly after the incorporation event. KCI-monomer has a conformation which is distinct from that of either conventional G- or F-actin, as judged by UV spectroscopy at 210-220 nm and by changes in ATP affinity. ATP is not hydrolyzed during conversion of G-actin to KCI-monomer. KCI-monomer formation precedes filament formation and may be necessary for the assembly event. Although incorporation of KCI-monomers into filaments demonstrates lagphase kinetics by viscometry, both continuous absorbance monitoring at 232 nm and rapid sedimentation of filaments demonstrate hyperbolic assembly curves. ATP hydrolysis significantly lags the formation of actin filaments. When half of the actin has assembled, only 0.1 to 0.2 mole of ATP are hydrolyzed per mole of actin present as filaments.  相似文献   

11.
The 'pure' difference spectra of the three species, IM, IIM and IIIM, formed in the low-temperature reaction of membrane-bound mixed-valence-state cytochrome oxidase with O2 relative to unliganded membrane-bound mixed-valence-state cytochrome oxidase were characterized by optical spectroscopy in the visible region. The difference spectrum of species IM was characterized by a peak at 590 nm and a trough at 608 nm, that of species IIM by a peak at 606 nm, and that of species IIIM by a peak at 610 nm. A comparison with the difference spectra of species IIM and IIIM obtained with soluble cytochrome oxidase [Clore, Andréasson, Karlsson, Aasa & Malmström (1980) Biochem. J. 185, 155-167] revealed small but significant differences in the peak positions and bandwidths of the 605-610 nm absorption band.  相似文献   

12.
A spectrophotometric study of the reduction of the Fe3+ microperoxidase-8-aniline (Fe3+-MP-8-An) complex has been carried out. Addition of NADH to a solution of Fe3+-MP-8-An under strictly anerobic conditions results in the formation of a species with lambda max = 414 nm (Fe3+-MP-8-An lambda max 407 nm). The kinetics of formation of this species show an induction period (tau) which follows saturation kinetics with respect to [aniline] with Km(app) = 2.2 x 10(-3) mol dm-3, i.e., close to that obtained in the preceding paper from O2 consumption kinetics mediated by MP-8. Addition of an anerobic solution of the NADH reduced MP-8-An complex, to a saturated O2 solution at pH 12 in the presence of 0.5 mM NADH and aniline 10 mM results in the virtual elimination of the induction phase, which has previously characterized O2 consumption kinetics in ferriprotoporphyrin IX oxygen activation systems. The Arrhenius activation energy for the reduction of the Fe3+-MP-8-An complex is close to that observed for the first reductive step in the cyt P-450 O2 activation cycle. Anerobic reduction of Fe3+-MP-8 by sodium dithionite in 20% MeOH/Aq at pH 8 followed by anerobic titration of the Fe2+-MP-8 (lambda max 420.5 nm) with aniline at pH 12 gives rise to a species lambda max 415 with KD for the process = 4.4 x 10(-3) mol dm-3 (+/- 1.2 x 10(-3) mol dm-3).  相似文献   

13.
The tetracycline uptake kinetics of 35 Bifidobacterium longum strains isolated from the human gastrointestinal tract were examined by fluorescence spectroscopy, and the suitability of the technique as a screening tool of tetracycline resistance or susceptibility was determined. The strains were first grouped into three classes based on their corresponding minimum inhibitory concentrations (MICs) of tetracycline, as established by the microdilution method: susceptible (MICs or=32 microg mL(-1)). The kinetics of tetracycline uptake for the strains in each resistance group were then analyzed over a 20 min period by fluorescence spectroscopy (absorbance wavelength 524 nm, excitation wavelength 400 nm) in a buffer system containing 100 microg mL(-1) tetracycline. Principal component analysis and factorial discriminant analysis of the results showed excellent distinction among susceptible, semi-resistant, and resistant strains. The proposed method provides a powerful and convenient means of rapidly screening tetracycline resistance in B. longum.  相似文献   

14.
We have studied the hydrogen-deuterium exchange kinetics of the exchangeable protons of the poly(dG-dC).poly(dG-dC) in the Z form of the polymer, using resonance Raman spectroscopy with 257 nm and 284 nm excitation wavelengths. In our experimental conditions (4.5 M NaCl, phosphate buffer pH7, 2 degrees C) the two amino protons and the imino proton of guanine are exchanged with the same exchange half-time of 13 min, whereas the two amino protons of cytosine are exchanged with the same exchange half-time of 51 min.  相似文献   

15.
Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (?=16nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.  相似文献   

16.
运用紫外光谱技术结合化学计量学,建立快速鉴别不同基原黄精的方法。通过单因素实验确定黄精最佳提取溶剂、时间和用量,制备测试液,采用紫外光谱技术建立3种基原黄精的紫外指纹图谱,光谱数据转化后进行主成分(PCA)和系统聚类分析(HCA)。该方法重现性、精密度、稳定性较好,结果表明不同种类黄精紫外指纹图谱具有指纹特性,3种基原植物黄精紫外光谱图在210 nm、220 nm、280 nm附近差异明显;聚类分析和主成分分析三维投影图反映出不同种类黄精的化学成分积累具有差异,能较好地区分滇黄精(Polygonatumkingianum)、黄精(P.sibiricum)与多花黄精(P.cyrtonema)。紫外光谱结合化学计量学能快速鉴别不同种类黄精,可作为黄精的鉴别和质量控制新方法,为黄精临床应用、资源开发及黄精属植物分类提供辅助方法。  相似文献   

17.
The soluble methane monooxygenase system from Methylococcus capsulatus (Bath) catalyzes the oxidation of methane to methanol and water utilizing dioxygen at a non-heme, carboxylate-bridged diiron center housed in the hydroxylase (H) component. To probe the nature of the reductive activation of dioxygen in this system, reactions of an analogous molecule, nitric oxide, with the diiron(II) form of the enzyme (Hred) were investigated by both continuous and discontinuous kinetics methodologies using optical, EPR, and M?ssbauer spectroscopy. Reaction of NO with Hred affords a dinitrosyl species, designated Hdinitrosyl, with optical spectra (lambdamax = 450 and 620 nm) and M?ssbauer parameters (delta = 0.72 mm/s, DeltaEQ = 1.55 mm/s) similar to those of synthetic dinitrosyl analogues and of the dinitrosyl adduct of the reduced ribonucleotide reductase R2 (RNR-R2) protein. The Hdinitrosyl species models features of the Hperoxo intermediate formed in the analogous dioxygen reaction. In the presence of protein B, Hdinitrosyl builds up with approximately the same rate constant as Hperoxo ( approximately 26 s-1) at 4 degrees C. In the absence of protein B, the kinetics of Hdinitrosyl formation were best fit with a biphasic A --> B --> C model, indicating the presence of an intermediate species between Hred and Hdinitrosyl. This result contrasts with the reaction of Hred with dioxygen, in which the Hperoxo intermediate forms in measurable quantities only in the presence of protein B. These findings suggest that protein B may alter the positioning but not the availability of coordination sites on iron for exogenous ligand binding and reactivity.  相似文献   

18.
Intranuclear fibrils due to poly-alanine expansions in the N-terminal domain of the poly(A) binding protein PABPN1 correlate with the disease oculopharyngeal muscular dystrophy (OPMD). For monitoring fibril formation by fluorescence and real-time NMR spectroscopy, tryptophans were introduced either into the middle or C-terminal of the poly-alanine segment. The kinetics of fibril formation which were monitored by fluorescence spectroscopy were matched by real-time NMR kinetics. Our results show that fibril formation is concomitant with the burial of the tryptophans in the fibrillar core. Since no soluble pre-fibrillar intermediate(s) was detected, fibril formation of this domain may be regarded as a two state conversion from an unfolded soluble into folded insoluble species.  相似文献   

19.
1. The results of non-linear optimization studies on the mechanism of reaction of solid-state fully reduced membrane-bound cytochrome oxidase with CO over the 178--203 K range are presented. The analysis is carried out on data obtained by dual-wavelength multichannel spectroscopy at three wavelength pairs (444--463 nm, 590--630 nm and 608--630 nm), which yield three distinct progress curves. The only model that satisfies the triple requirement of a standard deviation within the standard error of the data, a random distribution of residuals and good determination of the optimized parameters is a two-species sequential mechanism: flash photolysis yields unliganded cytochrome oxidase and free CO, which then recombine to form species Ic; Ic is then converted into species IIc, which is identical with the cytochrome oxidase-CO complex existing before flash photolysis. All the thermodynamic parameters describing this model are calculated. 2. On the basis of the data obtained from this paper, together with data from potentiometric studies, magnetic susceptibility measurements and i.r. spectroscopy, the chemical identity of the species is suggested.  相似文献   

20.
M Roy  E W Miles  R S Phillips  M F Dunn 《Biochemistry》1988,27(23):8661-8669
The reactions of 2,3-dihydro-L-tryptophan (DHT) and oxindolyl-L-alanine (OXA) with tryptophan synthase have been investigated by rapid-scanning stopped-flow (RSSF) spectroscopy and by the concentration dependence of rates measured by single-wavelength stopped-flow (SWSF) spectroscopy. The RSSF spectral changes for DHT and OXA show the disappearance of the internal aldimine (lambda max 412 nm), the formation and decay of intermediates absorbing less than or equal to 340 nm, and the appearance of the quinonoid (lambda max 492 and 480 nm, respectively). Rate constants determined by SWSF were either well resolved (i.e., k1[DHT], k-1 greater than k2, k-2 greater than k3, k-3) or indicative of a tightly coupled system (i.e., k1[OXA], k-1 greater than or equal to k2, k-2 greater than k3, k-3). The RSSF spectral changes and SWSF kinetic studies together with computer simulations of the kinetic time courses are consistent with a mechanism that includes formation of a bleached species. Detection of these shorter wavelength species in the reactions of OXA and DHT indicates that substrate analogues with tetrahedral geometry at C-3 induce new protein-substrate interactions that result in the accumulation of species not previously detected in the tryptophan synthase system. The bleached species with lambda max less than or equal to 340 nm are proposed as the gem-diamine intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号