首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protease-activated receptors (PARs) compose a family of G protein-coupled receptors activated by proteolysis with exposure of their tethered ligand. Recently, we reported that a neutrophil-derived serine proteinase, proteinase 3 (PR3), activated human oral epithelial cells through PAR-2. The present study examined whether other neutrophil serine proteinases, human leukocyte elastase (HLE), and cathepsin G (Cat G) activate nonepithelial cells, human gingival fibroblasts (HGF). HLE and Cat G as well as PR3 activated HGF to produce IL-8 and monocyte chemoattractant protein 1. Human oral epithelial cells but not HGF express mRNA and protein of secretory leukocyte protease inhibitor, an inhibitor of HLE and Cat G, and recombinant secretory leukocyte protease inhibitor clearly inhibited the activation of HGF induced by HLE and Cat G but not by PR3. HGF express PAR-1 and PAR-2 mRNA in the cells and the proteins on the cell surface. HLE and Cat G cleaved the peptide corresponding to the N terminus of PAR-2 with exposure of its tethered ligand. Treatment with trypsin, an agonist for PAR-2, and a synthetic PAR-2 agonist peptide induced intracellular Ca(2+) mobilization and rendered cells refractory to subsequent stimulation with HLE and Cat G. The production of cytokine induced by HLE and Cat G and the PAR-2 agonist peptide was completely abolished by inhibition of phospholipase C. These findings suggest that neutrophil serine proteinases have equal ability to activate human nonepithelial cells through PAR-2 to produce inflammatory cytokines and may control a number of inflammatory processes such as periodontitis.  相似文献   

2.
Anti-neutrophil cytoplasmic Abs targeting proteinase 3 (PR3) have been detected in relation to a wide range of inflammatory conditions such as periodontitis, and interaction of anti-PR3 Abs with endothelial and epithelial cells provokes cell activation, although the underlying mechanism has been unclear. The present study showed that human oral epithelial cells expressed PR3 mRNA after treatment with proinflammatory cytokines such as IL-1alpha, TNF-alpha, IFN-alpha, IFN-beta, and IFN-gamma. A 29-kDa PR3 was expressed on the cell surface and released into culture supernatants by the cells upon stimulation with these cytokines. The membrane and supernatant fractions of oral epithelial cells exhibited enzymatic activity, which was inhibited by serine proteinase inhibitors, but not by a cysteine proteinase inhibitor or secretory leukocyte protease inhibitor. Addition of anti-PR3 Abs to cytokine-primed oral epithelial cells in culture induced remarkable secretion of IL-8 and monocyte chemoattractant protein 1 and aggregation of PR3 on the cells. RNA interference targeted to protease-activated receptor-2 mRNA and intracellular Ca2+ mobilization assays revealed that anti-PR3 Abs activated the epithelial cells through protease-activated receptor-2, a family of G protein-coupled receptors. The anti-PR3 Ab-mediated cell activation was completely abolished by RNA interference targeted to PR3 mRNA and by inhibition of phospholipase C and NF-kappaB. Immunohistochemistry showed that inflamed oral epithelium actually expresses PR3 protein. These results suggest that oral epithelial cells express functional PR3 in the inflamed sites and respond to anti-PR3 Abs detected in diseased sera, and that these mechanisms may actively participate in the inflammatory process, including periodontitis.  相似文献   

3.
Proteinase-activated receptors (PARs), a subfamily of G protein-coupled receptors, which are activated by serine proteases, such as trypsin, play pivotal roles in the CNS. Mesotrypsin (trypsin IV) has been identified as a brain-specific trypsin isoform. However, its potential physiological role concerning PAR activation in the brain is largely unknown. Here, we show for the first time that mesotrypsin, encoded by the PRSS3 (proteinase, serine) gene, evokes a transient and pronounced Ca(2+) mobilization in both primary rat astrocytes and retinal ganglion RGC-5 cells, suggesting a physiological role of mesotrypsin in brain cells. Mesotrypsin mediates Ca(2+) responses in rat astrocytes in a concentration-dependent manner, with a 50% effective concentration (EC(50)) value of 25 nm. The maximal effect of mesotrypsin on Ca(2+) mobilization in rat astrocytes is much higher than that observed in 1321N1 human astrocytoma cells, indicating that the activity of mesotrypsin is species-specific. The pre-treatment of cells with thrombin or the PAR-1-specific peptide TRag (Ala-pFluoro-Phe-Arg-Cha-HomoArg-Tyr-NH(2), synthetic thrombin receptor agonist peptide), but not the PAR-2-specific peptide, reduces significantly the mesotrypsin-induced Ca(2+) response. Treatment with the PAR-1 antagonist SCH79797 confirms that mesotrypsin selectively activates PAR-1 in rat astrocytes. Unlike mesotrypsin, the two other trypsin isoforms, cationic and anionic trypsin, activate multiple PARs in rat astrocytes. Therefore, our data suggest that brain-specific mesotrypsin, via the regulation of PAR-1, is likely to be involved in multiple physiological/pathological processes in the brain.  相似文献   

4.
PAR-2, a member of a family of G-protein-coupled receptors, can be activated by serine proteases via proteolytic cleavage. PAR-2 expression is known to be upregulated in respiratory epithelium subsequent to inflammation in asthma and chronic obstructive pulmonary disease (COPD). Since these diseases also are characterized by excessive mucus production and secretion, we investigated whether PAR-2 could be linked to mucin hypersecretion by airway epithelium. Normal human bronchial epithelial (NHBE) cells in primary culture or the human bronchial epithelial cell lines, NCI-H292 and HBE-1, were used. NHBE, NCI-H292, and HBE-1 cells expressed prominent levels of PAR-2 protein. Short-term (30min) exposure of cells to the synthetic PAR-2 agonist peptide (SLIGKV-NH2) elicited a small but statistically significant increase in mucin secretion at high concentrations (100microM and 1000microM), compared to a control peptide with reversed amino acid sequence (VKGILS-NH2). Neither human lung tryptase nor bovine pancreatic trypsin, both PAR-2 agonists, affected NHBE cell mucin secretion when added over a range of concentrations. Knockdown of PAR-2 expression by siRNA blocked the stimulatory effect of the AP. The results suggest that, since PAR-2 activation only weakly increases mucin secretion by human airway epithelial cells in vitro, PAR-2 probably is not a significant contributor to mucin hypersecretion in inflamed airways.  相似文献   

5.
IL-18, a potent IFN-gamma-inducing cytokine, is expressed by various nonimmune cells as well as macrophages, suggesting that it has important physiological and immunological roles. The present study focused on the mechanism of active IL-18 induction from human oral epithelial cells. The epithelial cells and the cell lines constitutively express IL-18 mRNA and the 24-kDa precursor form of IL-18. Bioactive IL-18 exhibiting IFN-gamma-inducing activity was detected in the supernatant of the cells on costimulation with neutrophil proteinase 3 (PR3) and LPS for 24 h after IFN-gamma-priming for 3 days. An active 18-kDa form of IL-18 was detected in lysate and supernatant of the cells only after the above treatment and the induction was inhibited by cycloheximide and by serine proteinase inhibitors. After the treatment, lactate dehydrogenase activity was not detected in the cell culture supernatant, and PR3 was detected only in the membrane and not in cytoplasm fractions of the cells. Caspase-1 was not detected in the cells even after the treatment and the IL-18 induction was not inhibited by a caspase-1 inhibitor. These results suggest that the PR3-mediated induction of bioactive IL-18 secretion from oral epithelial cells in combination with LPS after IFN-gamma-priming occurred via a caspase-1-independent pathway, and provide new insight into the possible involvement of a neutrophil proteinase in the induction of bioactive IL-18 in oral inflammation such as periodontitis.  相似文献   

6.
The respiratory epithelium represents the first barrier encountered by airborne Ags. Two major dust mite Ags, Der p3 and Der p9, are serine proteases that may activate lung epithelial cells by interaction with the protease-activated receptor 2 (PAR-2). In this study both Der p3 and Der p9 cleaved the peptide corresponding to the N terminus of PAR-2 at the activation site. Both Ags sequentially stimulated phosphoinositide hydrolysis, transient cytosolic Ca(2+) mobilization, and release of GM-CSF and eotaxin in human pulmonary epithelial cells. These responses were similar to those observed with trypsin and a specific PAR-2 agonist and were related to the serine protease activity of Der p3 and Der p9. Cell exposure to the Ags resulted in a refractory period, indicating that a PAR had been cleaved. Partial desensitization to Der p3 and Der p9 by the PAR-2 agonist suggested that PAR-2 was one target of the Ags. However, PAR-2 was not the only target, because the PAR-2 agonist caused less desensitization to Der p3 and Der p9 than did trypsin. A phospholipase C inhibitor prevented the cytokine-releasing effect of the PAR-2 agonist and abolished or reduced (>70%) the cytokine-releasing effects of Der p3 and Der p9. Our results suggest that Der p 3 and Der p9 may induce a nonallergic inflammatory response in the airways through the release of proinflammatory cytokines from the bronchial epithelium and that this effect is at least in part mediated by PAR-2.  相似文献   

7.
Human airway trypsin-like protease (HAT), a serine protease found in the sputum of patients with chronic airway diseases, is an agonist of protease-activated receptor-2 (PAR-2). Previous results have shown that HAT enhances the release of amphiregulin (AR); further, it causes MUC5AC gene expression through the AR-epidermal growth factor receptor pathway in the airway epithelial cell line NCI-H292. In this study, the mechanisms by which HAT-induced AR release can occur were investigated. HAT-induced AR gene expression was mediated by extracellular signal-regulated kinase (ERK) pathway, as pretreatment of cells with ERK pathway inhibitor eliminated the effect of HAT on AR mRNA. Both HAT and PAR-2 agonist peptide (PAR-2 AP) induced ERK phosphorylation; further, desensitization of PAR-2 with a brief exposure of cells to PAR-2 AP resulted in inhibition of HAT-induced ERK phosphorylation, suggesting that HAT activates ERK through PAR-2. Moreover, PAR-2 AP induced AR gene expression subsequent to protein production in the cellular fraction through the ERK pathway indicating that PAR-2-mediated activation of ERK is essential for HAT-induced AR production. However, in contrast to HAT, PAR-2 AP could not cause AR release into extracellular space; it appears that activation of PAR-2 is not sufficient for HAT-induced AR release. Finally, HAT-induced AR release was eliminated by blockade of tumour necrosis factor alpha-converting enzyme (TACE) by the TAPI-1 and RNA interference, suggesting that TACE activity is necessary for HAT-induced AR release. These observations show that HAT induces AR production through the PAR-2 mediated ERK pathway, and then causes AR release by a TACE-dependent mechanism.  相似文献   

8.
The serine protease thrombin stimulates proliferation in osteoblasts, but decreases alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation. Three thrombin receptors have been identified, protease activated receptor (PAR)-1, PAR-3 and PAR-4; we have previously demonstrated that mouse osteoblasts express PAR-1 and PAR-4. The effect of thrombin on osteoblast proliferation and differentiation was studied to determine which of the thrombin receptors is responsible for the primary effects of thrombin. Primary mouse calvarial osteoblasts from PAR-1-null and wild-type mice, and synthetic peptides that specifically activate PAR-1 (TFFLR-NH2) and PAR-4 (AYPGKF-NH2) were used. Both the PAR-1-activating peptide and thrombin stimulated incorporation of 5-bromo-2'-deoxyuridine (two to four-fold, P < 0.001) and reduced alkaline phosphatase activity (approximately three-fold, P < 0.05) in cells from wild-type mice. The PAR-4-activating peptide, however, had no effect on either alkaline phosphatase activity or proliferation in these cells. Neither thrombin nor PAR-4-activating peptide was able to affect osteoblast proliferation or alkaline phosphatase activity in cells isolated from PAR-1-null mice. The results demonstrate that thrombin stimulates proliferation and inhibits differentiation of osteoblasts through activation of PAR-1. No other thrombin receptor appears to be involved in these effects.  相似文献   

9.
Several growth factors, including platelet-derived growth factor (PDGF), have been implicated in the mechanism of lung and airway remodeling. In the present study, we evaluated whether thrombin may promote lung and airway remodeling by increasing PDGF production from lung and airway epithelial cells. Conditioned medium (CM) was prepared by treating epithelial cells with increasing concentrations of thrombin; before use in the assays, CM was treated with hirudin until complete inhibition of thrombin activity. CM from epithelial cells stimulated the proliferation of lung fibroblasts and bronchial smooth muscle cells. Anti-PDGF antibody significantly inhibited this CM proliferative activity, implicating PDGF in this effect. Enzyme immunoassay and RT-PCR demonstrated that thrombin induced the secretion and expression of PDGF from bronchial and alveolar epithelial cells. RT-PCR showed that epithelial cells express the thrombin receptors protease-activated receptor (PAR)-1, PAR-3, and PAR-4. The PAR-1 agonist peptide was also found to induce PDGF secretion from epithelial cells, suggesting that the cellular effect of thrombin occurs via a PAR-1-mediated mechanism. Overall, this study showed for the first time that thrombin may play an important role in the process of lung and airway remodeling by stimulating the expression of PDGF via its cellular receptor, PAR-1.  相似文献   

10.
Protease-activated receptor-2 (PAR-2) plays a role in inflammatory reactions in airway physiology. Proteases cleaving the extracellular NH(2) terminus of receptors activate or inactivate PAR, thus possessing a therapeutic potential. Using RT-PCR and immunocytochemistry, we show PAR-2 in human airway epithelial cell lines human bronchial epithelial (HBE) and A549. Functional expression of PAR-2 was confirmed by Ca(2+) imaging studies using the receptor agonist protease trypsin. The effect was abolished by soybean trypsin inhibitor and mimicked by the specific PAR-2 peptide agonist SLIGKV. Amplitude and duration of PAR-2-elicited Ca(2+) response in HBE and A549 cells depend on concentration and time of agonist superfusion. The response is partially pertussis toxin (PTX) insensitive, abolished by the phospholipase C inhibitor U-73122, and diminished by the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate. Cathepsin G altered neither the resting Ca(2+) level nor PAR-2-elicited Ca(2+) response. Thermolysin, a prototypic bacterial metalloprotease, induced a dose-dependent Ca(2+) response in HBE, but not A549, cells. In both cell lines, thermolysin abolished the response to a subsequent trypsin challenge but not to SLIGKV. Thus different epithelial cell types express different PAR-2 with identical responses to physiological stimuli (trypsin, SLIGKV) but different sensitivity to modifying proteases, such as thermolysin.  相似文献   

11.
Tryptic enzymes such as tryptase, trypsin and thrombin are reportedly able to alter neutrophil behavior. However, little is known of the influence of these proteinases on lactoferrin or IL-8 release from neutrophils. In the present study, we investigated the effects of tryptase, trypsin, thrombin and elastase, and agonist peptides of PAR-1 SFLLR-NH(2) and PAR-2 SLIGKV-NH(2) and tc-LIGRLO-NH(2) on lactoferrin and IL-8 release from highly purified human neutrophils. Flow cytometry shows CD16(+) neutrophils express PAR-1 and PAR-2, but not PAR-3 and PAR-4 proteins. RT-PCR analysis reveals that neutrophils express only PAR-2 genes. Tryptase and trypsin, but not thrombin and elastase, induced significant lactoferrin and IL-8 secretion from neutrophils. SLIGKV-NH(2) and tc-LIGRLO-NH(2), but not SFLLR-NH(2), also stimulated lactoferrin and IL-8 secretion from neutrophils. In conclusion, only a proportion of neutrophils express PAR-1 and/or PAR-2. Tryptase and trypsin-induced lactoferrin and IL-8 secretion from neutrophils most likely occur through activation of PAR-2.  相似文献   

12.
牛青霞  陈卓毅  林洁莲  郑坚 《生物磁学》2011,(15):2818-2821
目的:研究胰蛋白酶对IL-8释放的影响。方法:分离、培养人脐静脉内皮细胞(human umbilical vein endothelialcells,HU-VECs)、倒置显微镜观察形态变化,流式细胞术检测内皮细胞标志和蛋白酶活化受体.2(proteinase.activatedreceptor.2,PAR-2)表达,ELISA检测HUVECs培养上清中IL-8水平。结果:HUVECs表达内皮细胞标志和PAR-2。刺激16h,1g/ml胰蛋白酶和100MPAR-2激活肽组HUVECs单层均匀性降低。胰蛋白酶能够显著刺激HUVECs释放IL-8,PAR-2激活肽也诱导IL-8水平升高。蛋白酶抑制剂和PAR-2抑制肽均能够显著抑制胰蛋白酶诱导的IL-8释放。PAR-2激活肽和胰蛋白酶诱导升高的IL-8水平之间成正相关性。结论:胰蛋白酶很可能通过PAR-2激活促进血管内皮细胞释放IL-8。  相似文献   

13.
Neutrophil transmigration requires the localization of neutrophils to endothelial cell junctions, in which receptor-ligand interactions and the action of serine proteases promote leukocyte diapedesis. NB1 (CD177) is a neutrophil-expressed surface molecule that has been reported to bind proteinase 3 (PR3), a serine protease released from activated neutrophils. PR3 has demonstrated proteolytic activity on a number of substrates, including extracellular matrix proteins, although its role in neutrophil transmigration is unknown. Recently, NB1 has been shown to be a heterophilic binding partner for the endothelial cell junctional protein, PECAM-1. Disrupting the interaction between NB1 and PECAM-1 significantly inhibits neutrophil transendothelial cell migration on endothelial cell monolayers. Because NB1 interacts with endothelial cell PECAM-1 at cell junctions where transmigration occurs, we considered that NB1-PR3 interactions may play a role in aiding neutrophil diapedesis. Blocking Abs targeting the heterophilic binding domain of PECAM-1 significantly inhibited transmigration of NB1-positive neutrophils through IL-1β-stimulated endothelial cell monolayers. PR3 expression and activity were significantly increased on NB1-positive neutrophils following transmigration, whereas neutrophils lacking NB1 demonstrated no increase in PR3. Finally, using selective serine protease inhibitors, we determined that PR3 activity facilitated transmigration of NB1-positive neutrophils under both static and flow conditions. These data demonstrate that PR3 contributes in the selective recruitment of the NB1-positive neutrophil population.  相似文献   

14.
Proteinase-activated receptor-2 (PAR-2) is a member of a family of G-protein-coupled, seven-transmembrane domain receptors that are activated by proteolytic cleavage. The receptor is expressed in a number of different tissues and potential physiological activators identified thus far include trypsin and mast cell tryptase. Acrosin, a trypsin-like serine proteinase found in spermatozoa of all mammals, was found to cleave a model peptide fluorescent quenched substrate representing the cleavage site of PAR-2. This substrate was cleaved with kinetics similar to those of the known PAR-2 activators, trypsin and mast cell tryptase. Acrosin was also shown to induce significant intracellular calcium responses in Chinese hamster ovary cells stably expressing intact human PAR-2, most probably due to activation of the receptor. Immunohistochemical studies using PAR-2 specific antibodies indicated that the receptor is expressed by mouse oocytes, which suggests that acrosin may play additional role(s) in the fertilization process via the activation of PAR-2 on oocytes.  相似文献   

15.
Epithelia from many tissues express protease-activated receptors (PARs) that play a major role in several different physiological processes. In this study, we examined their capacity to modulate IL-6, IL-8, and PGE(2) production in both the A459 and BEAS-2B cell lines and primary human bronchial epithelial cells (HBECs). All three cell types expressed PAR-1, PAR-2, PAR-3, and PAR-4, as judged by RT-PCR and immunocytochemistry. Agonist peptides corresponding to the nascent N termini of PAR-1, PAR-2, and PAR-4 induced the release of cytokines from A549, BEAS-2B, and HBECs with a rank order of potency of PAR-2 > PAR-4 > PAR-1 at 400 microM. PAR-1, PAR-2, and PAR-4 also caused the release of PGE(2) from A549 and HBECs. The PAR-3 agonist peptide was inactive in all systems tested. PAR-1, PAR-2, or PAR-4, in combination, caused additive IL-6 release, but only the PAR-1 and PAR-2 combination resulted in an additive IL-8 response. PAR peptide-induced responses were accompanied by changes in intracellular calcium ion concentrations. However, Ca(2+) ion shutoff was approximately 2-fold slower with PAR-4 than with PAR-1 or PAR-2, suggesting differential G protein coupling. Combined, these data suggest an important role for PAR in the modulation of inflammation in the lung.  相似文献   

16.
Protease-activated receptors (PARs) are involved in the contribution of airway epithelial cells to the development of inflammation by release of pro- and anti-inflammatory mediators. Here, we evaluated in epithelial cells the influence of LPS and continuous PAR activation on PAR expression level and the release of the proinflammatory chemokine IL-8. We studied primary human small airway epithelial cells and two airway epithelial cell lines, A549 and HBE cells. LPS specifically upregulated expression of PAR-2 but not of PAR-1. Exposure of epithelial cells to PAR-1 or PAR-2 agonists increased the PAR-1 expression level. The PAR-2 agonist exhibited higher potency than PAR-1 activators. However, the combined exposure of epithelial cells to LPS and PAR agonists abrogated the PAR-1 upregulation. The PAR-2 expression level was also upregulated after exposure to PAR-1 or PAR-2 agonists. This elevation was higher than the effect of PAR agonists on the PAR-1 level. In contrast to the PAR-1 level, the PAR-2 level remained elevated under concomitant stimulation with LPS and PAR-2 agonist. Furthermore, activation of PAR-2, but not of PAR-1, caused production of IL-8 from the epithelial cells. Interestingly, both in the epithelial cell line and in primary epithelial cells, there was a potentiation of the stimulation of the IL-8 synthesis and release by PAR-2 agonist together with LPS. In summary, these results underline the important role of PAR-2 in human lung epithelial cells. Moreover, our study shows an intricate interplay between LPS and PAR agonists in affecting PAR regulation and IL-8 production.  相似文献   

17.
Protease-activated receptor-2 (PAR-2) is activated when trypsin cleaves its NH(2) terminus to expose a tethered ligand. We previously demonstrated that PAR-2 activates ion channels in pancreatic duct epithelial cells (PDEC). Using real-time optical fluorescent probes, cyan fluorescence protein-Epac1-yellow fluorescence protein for cAMP, PH(PLC-delta1)-enhanced green fluorescent protein for phosphatidylinositol 4,5-bisphosphate, and protein kinase Cgamma (PKCgamma)-C1-yellow fluorescence protein for diacylglycerol, we now define the signaling pathways mediating PAR-2 effect in dog PDEC. Although PAR-2 activation does not stimulate a cAMP increase, it induces phospholipase C to hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol. Intracellular Ca(2+) mobilization from inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores and a subsequent Ca(2+) influx through store-operated Ca(2+) channels cause a biphasic increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), measured with Indo-1 dye. Single-cell amperometry demonstrated that this increase in [Ca(2+)](i) in turn causes a biphasic increase in exocytosis. A protein kinase assay revealed that trypsin also activates PKC isozymes to stimulate additional exocytosis. Paralleling the increased exocytosis, mucin secretion from PDEC was also induced by trypsin or the PAR-2 activating peptide. Consistent with the serosal localization of PAR-2, 1 microm luminal trypsin did not induce exocytosis in polarized PDEC monolayers; on the other hand, 10 microm trypsin at 37 degrees C damaged the epithelial barrier sufficiently so that it could reach and activate the serosal PAR-2 to stimulate exocytosis. Thus, in PDEC, PAR-2 activation increases [Ca(2+)](i) and activates PKC to stimulate exocytosis and mucin secretion. These functions may mediate the reported protective role of PAR-2 in different models of pancreatitis.  相似文献   

18.
Allergenic serine proteases are important in the pathogenesis of asthma. One of these, Pen c 13, is the immunodominant allergen produced by Penicillium citrinum. Many serine proteases induce cytokine expression, but whether Pen c 13 does so in human respiratory epithelial cells is not known. In this study, we investigated whether Pen c 13 caused IL-8 release and activated protease-activated receptors (PARs) in airway epithelial cells. In airway-derived A549 cells and normal human airway epithelial cells, Pen c 13 induced IL-8 release in a dose-dependent manner. Pen c 13 also increased IL-8 release in a time-dependent manner in A549 cells. Pen c 13 cleaved PAR-1 and PAR-2 at their activation sites. Treatment with Pen c 13 induced intracellular Ca(2+) mobilization and desensitized the cells to the action of other proteases and PAR-1 and PAR-2 agonists. Moreover, Pen c 13-mediated IL-8 release was significantly decreased in Ca(2+)-free medium and was abolished by the protease inhibitors, PMSF and 4-(2-aminoethyl) benzenesulfonyl fluoride. Blocking Abs against the cleavage sites of PAR-1 and PAR-2, but not of PAR-4, inhibited Pen c 13-induced IL-8 production, as did inhibition of phospholipase C. Pen c 13 induced IL-8 expression via activation of ERK 1/2, and not of p38 and JNK. In addition, treatment of A549 cells or normal human airway epithelial cells with Pen c 13 increased phosphorylation of ERK 1/2 by a Ca(2+)-dependent pathway. These finding show that Pen c 13 induces IL-8 release in airway epithelial cells and that this is dependent on PAR-1 and PAR-2 activation and intracellular calcium.  相似文献   

19.
The proteinase-activated thrombin receptor-1 (PAR-1) belongs to a unique family of G protein-coupled receptors activated by proteolytic cleavage. We studied the effect of PAR-1 activation in the regulation of ion transport in mouse colon in vitro. Expression of PAR-1 in mouse colon was assessed by RT-PCR and immunohistochemistry. To study the role of PAR-1 activation in chloride secretion, mouse colon was mounted in Ussing chambers. Changes in short-circuit current (Isc) were measured in tissues exposed to either thrombin, saline, the PAR-1-activating peptide TFLLR-NH2, or the inactive reverse peptide RLLFT-NH2, before electrical field stimulation (EFS). Experiments were repeated in the presence of either a PAR-1 antagonist or in PAR-1-deficient mice to assess receptor specificity. In addition, studies were conducted in the presence of chloride-free buffer or the muscarinic antagonist atropine to assess chloride dependency and the role of cholinergic neurons in the PAR-1-induced effect. PAR-1 mRNA was expressed in full-thickness specimens and mucosal scrapings of mouse colon. PAR-1 immunoreactivity was found on epithelial cells and on neurons in submucosal ganglia where it was colocalized with both VIP and neuropeptide Y. After PAR-1 activation by thrombin or TFLLR-NH2, secretory responses to EFS but not those to forskolin or carbachol were significantly reduced. The reduction in the response to EFS was not observed in the presence of the PAR-1 antagonist, in PAR-1-deficient mice, when chloride was excluded from the bathing medium, or when atropine was present. PAR-1 is expressed in submucosal ganglia in the mouse colon and its activation leads to a decrease in neurally evoked epithelial chloride secretion.  相似文献   

20.
In previous studies, we demonstrated that allergenic house dust mite proteases are potent inducers of proinflammatory cytokines from the respiratory epithelium, although the precise mechanisms involved were unclear. In this study, we investigated whether this was achieved through activation of protease-activated receptor (PAR)-1 or -2. Pretreatment of A549 respiratory epithelial cells with the clinically important cysteine protease allergen, Der p 1, ablated subsequent PAR-1, but not PAR-2 agonist peptide-induced IL-6 and IL-8 release. HeLa cells transfected with the plasmid coding for PAR-2, in contrast to PAR-1, released significant concentration of IL-6 after exposure to Der p 1. Exposure of HeLa cells transfected with either PAR-1/enhanced yellow fusion protein or PAR-2/enhanced yellow fusion protein to Der p 1 caused receptor internalization in the latter cells only, as judged by confocal microscopy with re-expression of the receptor within 120-min postenzyme exposure. Der p 1-induced cytokine release from both A549 and transfected HeLa cells was accompanied by changes in intracellular Ca(2+) concentrations. Desensitization studies showed that Der p 1 pretreatment of the A549 cells resulted in the abolition of both trypsin- and PAR-2 agonist peptide-induced Ca(2+) release, but not that induced by subsequent exposure to either thrombin or PAR-1 agonist peptide. These data indicate for the first time that the house dust mite allergen Der p 1-induced cytokine release from respiratory epithelial cells is, in part, mediated by activation of PAR-2, but not PAR-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号