首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous transient outward K(+) currents (STOCs) elicited by Ca(2+) sparks and steady-state K(+) currents modulate vascular reactivity, but effects of artery size, diabetic dyslipidemia, and exercise on these differentially regulated K(+) currents are unclear. We studied the conduit arteries and microvessels of male Yucatan swine assigned to one of three groups for 20 wk: control (C, n = 7), diabetic dyslipidemic (DD, n = 6), or treadmill-trained DD animals (DDX, n = 7). Circumflex artery blood flow velocity obtained with intracoronary Doppler and lumen diameters obtained by intravascular ultrasound enabled calculation of absolute coronary blood flow (CBF). Ca(2+) sparks were determined in pressurized microvessels, and perforated patch clamp assessed K(+) current in smooth muscle cells isolated from conduits and microvessels. Baseline CBF in DD was decreased versus C. In pressurized microvessels, Ca(2+) spark activity was significantly lower in DD versus C and DDX (P < 0.05 vs. DDX). STOCs were pronounced in microvessel (approximately 35 STOCs/min) in sharp contrast to conduit cells ( approximately 2 STOCs/min). STOCs were decreased by 86% in DD versus C and DDX in microvessels; in contrast, there was no difference in STOCs across groups in conduit cells. Steady-state K(+) current in microvessels was decreased in DD and DDX versus C; in contrast, steady-state K(+) current in conduit cells was decreased in DDX versus DD and C. We conclude that steady-state K(+) current and STOCs are differentially regulated in conduit versus microvessels in health and diabetic dyslipidemia. Exercise prevented diabetic dyslipidemia-induced decreases in baseline CBF, possibly via STOC-regulated basal microvascular tone.  相似文献   

2.
Chronic diabetes is often associated with cardiomyopathy, which may result, in part, from defects in cardiac muscle proteins. We investigated whether a 20-wk porcine model of diabetic dyslipidemia (DD) would impair in vivo myocardial function and yield alterations in cardiac myofibrillar proteins and whether endurance exercise training would improve these changes. Myocardial function was depressed in anesthetized DD pigs (n = 12) compared with sedentary controls (C; n = 13) as evidenced by an approximately 30% decrease in left ventricular fractional shortening and an approximately 35% decrease in +dP/dt measured by noninvasive echocardiography and direct cardiac catheterization, respectively. This depression in myocardial function was improved with chronic exercise as treadmill-trained DD pigs (DDX) (n = 13) had significantly greater fractional shortening and +dP/dt than DD animals. Interestingly, the isoform expression pattern of the myofibrillar regulatory protein, cardiac troponin T (cTnT), was significantly shifted from cTnT1 toward cTnT2 and cTnT3 in DD pigs. Furthermore, this change in cTnT isoform expression pattern was prevented in DDX pigs. Finally, there was a decrease in baseline levels of cAMP-dependent protein kinase-induced phosphorylation of the myofibrillar proteins troponin I and myosin-binding protein-C in DD animals. Overall, these results indicate that 20 wk of DD lead to myocardial dysfunction coincident with significant alterations in myofibrillar proteins, both of which are prevented with endurance exercise training, implying that changes in myofibrillar proteins may contribute, at least in part, to cardiac dysfunction associated with diabetic cardiomyopathy.  相似文献   

3.
In smooth muscle cells, localized intracellular Ca2+ transients, termed "Ca2+ sparks," activate several large-conductance Ca2+-activated K+ (KCa) channels, resulting in a transient KCa current. In some smooth muscle cell types, a significant proportion of Ca2+ sparks do not activate KCa channels. The goal of this study was to explore mechanisms that underlie fractional Ca2+ spark-KCa channel coupling. We investigated whether membrane depolarization or ryanodine-sensitive Ca2+ release (RyR) channel activation modulates coupling in newborn (1- to 3-day-old) porcine cerebral artery myocytes. At steady membrane potentials of -40, 0, and +40 mV, mean transient KCa current frequency was approximately 0.18, 0.43, and 0.26 Hz and KCa channel activity [number of KCa channels activated by Ca2+ sparksxopen probability of KCa channels at peak of Ca2+ sparks (NPo)] at the transient KCa current peak was approximately 4, 12, and 24, respectively. Depolarization between -40 and +40 mV increased KCa channel sensitivity to Ca2+ sparks and elevated the percentage of Ca2+ sparks that activated a transient KCa current from 59 to 86%. In a Ca2+-free bath solution or in diltiazem, a voltage-dependent Ca2+ channel blocker, steady membrane depolarization between -40 and +40 mV increased transient KCa current frequency up to approximately 1.6-fold. In contrast, caffeine (10 microM), an RyR channel activator, increased mean transient KCa current frequency but did not alter Ca2+ spark-KCa channel coupling. These data indicate that coupling is increased by mechanisms that elevate KCa channel sensitivity to Ca2+ sparks, but not by RyR channel activation. Overall, KCa channel insensitivity to Ca2+ sparks is a prominent factor underlying fractional Ca2+ spark uncoupling in newborn cerebral artery myocytes.  相似文献   

4.
In healthy coronary smooth muscle cells, the superficial sarcoplasmic reticulum (SR) buffers rise in intracellular Ca(2+) levels. In diabetic dyslipidemia, basal Ca(2+) levels are increased, yet Ca(2+) influx is decreased and SR Ca(2+) uptake is increased. Exercise prevents diabetic dyslipidemia-induced increases in basal Ca(2+) levels and decreases in Ca(2+) influx. We tested the hypothesis that diabetic dyslipidemia impairs Ca(2+) extrusion via a decrease in superficial SR and that exercise will prevent these losses. Male Yucatan swine were maintained in four treatment groups: control, hyperlipidemic, diabetic dyslipidemic, and diabetic dyslipidemic plus aerobically exercise trained. Intracellular Ca(2+) levels were measured during depolarization-induced Ca(2+) influx and caffeine-induced SR Ca(2+) release. Na(+)/Ca(2+) exchanger and plasmalemmal Ca(2+)-ATPase activity were assessed by inhibition with low extracellular Na(+) and 5,6-carboxyeosin, respectively. Superficial SR was quantified using the internal membrane dye 3,3'-dihexyloxacarbocyanine iodide (DiOC(6)) and novel analysis techniques. We found that, in diabetic dyslipidemia, Ca(2+) extrusion was impaired and superficial SR was decreased. Exercise prevented the diabetic dyslipidemia-induced decrease in superficial SR and restored plasmalemmal Ca(2+) extrusion. On the basis of these results, we conclude exercise attenuates the diabetic dyslipidemia-induced impairment in intracellular Ca(2+) regulation.  相似文献   

5.
Hyperglycemia, dyslipidemia, and associated insulin resistance are hallmarks of diabetes mellitus. Purposes of the study reported here were to develop practical methods for assessment of in vivo insulin sensitivity and determine contributions of hyperglycemia and dyslipidemia to insulin resistance in the porcine model of alloxan-induced diabetes mellitus and dyslipidemia. Male Yucatan swine groups were treated for 20 weeks: control (C), high fat-fed (2% cholesterol) hyperlipidemic (H), alloxan-induced diabetic normolipidemic (D), diabetic high fat-fed (diabetic dyslipidemic, DD), and diabetic dyslipidemic treated with the lipid-lowering agent atorvastatin (DDA). Plasma cholesterol concentration increased sixfold in animals of groups H, DD, and DDA, whereas triglyceride concentration increased threefold in animals of group DD only. Diabetics had decreases in glucose tolerance and pancreatic immunostaining for insulin. Use of the gold standard hyperinsulinemic euglycemic clamp procedure indicated that maximal insulin-stimulated glucose uptake was similar to that in humans, but this method was not practical for use in pigs. Instead, a more convenient and valid insulin sensitivity test involving suppression of insulin secretion with somatostatin and a single insulin injection was used. Insulin sensitivity was greatly impaired by anesthesia with isoflurane, but was not affected by use of the anxiolytic agent diazepam. Insulin sensitivity decreased by 75% in diabetics (groups D, DD, DDA), compared with animals of groups C and H, and was inversely related to fasting blood glucose concentration (r = -0.72). Insulin treatment to restore blood glucose values of diabetics (> 250 mg/dl) to near control values (< 100 mg/dl) promptly restored insulin sensitivity to control values. We conclude that hyperglycemia is a major cause of insulin resistance in the porcine model of alloxan-induced diabetes mellitus and dyslipidemia.  相似文献   

6.
The Arg615 to Cys615 mutation of the sarcoplasmic reticulum (SR) Ca2+ release channel of malignant hyperthermia susceptible (MHS) pigs results in a decreased sensitivity of the channel to inhibitory Ca2+ concentrations. To investigate whether this mutation also affects the ion selectivity filter of the channel, the monovalent cation conductances and ion permeability ratios of single Ca2+ release channels incorporated into planar lipid bilayers were compared. Monovalent cation conductances in symmetrical solutions were: Li+, 183 pS +/- 3 (n = 21); Na+, 474 pS +/- 6 (n = 29); K+, 771 pS +/- 7 (n = 29); Rb+, 502 pS +/- 10 (n = 22); and Cs+, 527 pS +/- 5 (n = 16). The single-channel conductances of MHS and normal Ca2+ release channel were not significantly different for any of the monovalent cations tested. Permeability ratios measured under biionic conditions had the permeability sequence Ca2+ >> Li+ > Na+ > K+ > or Rb+ > Cs+, with no significant difference noted between MHS and normal channels. This systematic examination of the conduction properties of the pig skeletal muscle Ca2+ release channel indicated a higher Ca2+ selectivity (PCa2+:Pk+ approximately 15.5) than the sixfold Ca2+ selectivity previously reported for rabbit skeletal (Smith et al., 1988) or sheep cardiac muscle (Tinker et al., 1992) Ca2+ release channels. These results also indicate that although Ca2+ regulation of Ca2+ release channel activity is altered, the Arg615 to Cys615 mutation of the porcine Ca2+ release channel does not affect the conductance or ion selectivity properties of the channel.  相似文献   

7.
The effects of exercise and diet on sarcoplasmic reticulum Ca(2+)-cycling properties in female vastus lateralis muscle were investigated in two groups of women following four different conditions. The conditions were 4 days of a low-carbohydrate (Lo CHO) and glycogen-depleting exercise plus a Lo CHO diet (Ex + Lo CHO) (experiment 2) and 4 days of normal CHO (Norm CHO) and glycogen-depleting exercise plus Norm CHO (Ex + Norm CHO) (experiment 1). Peak aerobic power (Vo2peak)) was 38.1 +/- 1.4 (SE); n = 9 and 35.6 +/- 1.4 ml.kg(-1).min(-1); n = 9, respectively. Sarcoplasmic reticulum properties measured in vitro in homogenates (micromol.g protein(-1).min(-1)) indicated exercise-induced reductions (P < 0.05) in maximal Ca(2+)-ATPase activity (0 > 30, 60 min > fatigue), Ca(2+) uptake (0 > 30 > 60 min, fatigue), and Ca(2+) release, both phase 1 (0, 30 > 60 min, fatigue) and phase 2 (0 > 30, 60 min, fatigue; 30 min > fatigue) in Norm CHO. Exercise was without effect in altering the Hill slope (n(H)), defined as the slope of relationship between Ca(2+)-ATPase activity and Ca(2+) concentration. No differences were observed between Norm CHO and Ex+Norm CHO. Compared with Norm CHO, Lo CHO resulted in a lower (P < 0.05) Ca(2+) uptake, phase 1 Ca(2+) release (30 min), and n(H). Ex + Lo CHO resulted in a greater (P < 0.05) Ca(2+) uptake and n(H) compared with Lo CHO. The results demonstrate that Lo CHO alone can disrupt SR Ca(2+) cycling and that, with the exception of Ca(2+) release, a glycogen-depleting session of exercise before Lo CHO can reverse the effects.  相似文献   

8.
Differential segmental distribution of electrophysiologically distinct myocytes helps to explain the variability of the pulmonary arteries to vasoactive agents. We have studied whether Ca2+ -dependent CI- (CICa) and K+ (KCa) channels are activated differentially in enzymatically dispersed conduit and resistance myocytes. We measured cytosolic [Ca2+] and the changes of membrane current and potential elicited by spontaneous or agonist-induced Ca2+ oscillations. Conduit arteries contained a heterogeneous cell population with a variable mixture of KCa and CICa conductances. Resistance arteries contained a more homogeneous cell population with predominance of CICa channel activation. The relation between KCa and CICa conductances in a given conduit myocyte determines the size of the V(m)change in response to a rise of cytosolic [Ca2+]. Conduit myocytes tend to hyperpolarize towards the K+ equilibrium potential (approximately - 90 m V). In resistance myocytes, release of Ca2+ from stores activates CI Cachannels and brings Vm to a value close to the chloride equilibrium potential (approximately - 20 or - 30 m V) thus favouring opening of Ca2+ channels and Ca2+ influx. In resistance vessels CICachannels contribute to link agonist-induced Ca2+ release from stores and membrane depolarization, thus permitting protracted vasoconstriction.  相似文献   

9.
Vascular endothelial growth factor-A (VEGF-A) is an endothelial-cell specific growth factor and leads to an increase in cytosolic free calcium ([Ca2+](i)) in endothelial cells. Ca2+ -activated K+ channels (KCa-channels) have been suggested to facilitate calcium influx by hyperpolarising the cell and thus increasing the electrochemical driving force for calcium influx. The patch-clamp technique was used to investigate the effect of VEGF-A on large conductance KCa-channels. The role of these channels in VEGF-induced proliferation (cell count, [3H]thymidine incorporation) was studied using the specific inhibitor iberiotoxin. VEGF-A strongly stimulated KCa-channel activity and led to a 14.2 +/- 4.8 fold (SEM, n = 12) increase in activity after 8 min of VEGF-A stimulation. The VEGF-A-induced activation occurred in calcium-free solution as well (16.7+/-2.2 fold, SEM, n = 5) whereas carboxyamidotriazole (CAI), an antiangiogenic drug which inhibits both Ca2+ influx and Ca2+ release from intracellular stores, completely blocked VEGF-A-induced KCa channel activation. Specific inhibition of KCa channel activity with iberiotoxin did not inhibit proliferation of endothelial cells induced by VEGF-A and or basic fibroblast growth factor (bFGF). In conclusion, we show that VEGF-A activates KCa-channels in HUVEC. However, KCa channel activity is not involved in VEGF-A- or bFGF-induced endothelial-cell proliferation. Since hyperpolarization of endothelial cells secondary to KCa-channel activation is electrically transmitted to vascular smooth muscle cells, which relax in response to hyperpolarization, the VEGF-A-induced KCa channel activation might contribute to VEGF-A-induced vasorelaxation.  相似文献   

10.
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.  相似文献   

11.
The regulation of calcium-activated K (KCa) channels by a G protein-mediated mechanism was studied. KCa channels were reconstituted in planar lipid bilayers by fusion of membrane vesicles from rat or pig myometrium. The regulatory process was studied by exploring the actions of GTP and GTP gamma S on single channel activity. KCa channels had a conductance of 260 +/- 6 pS (n = 25, +/- SE, 250/50 mM KCl gradient) and were voltage dependent. The open probability (Po) vs. voltage relationships were well fit by a Boltzmann distribution. The slope factor (11 mV) was insensitive to internal Ca2+. The half activation potential (V1/2) was shifted -70 mV by raising internal Ca2+ from pCa 6.2 to pCa 4. Addition of GTP or GTP gamma S activated channel activity only in the presence of Mg2+, a characteristic typical of G protein-mediated mechanisms. The Po increased from 0.18 +/- 0.08 to 0.49 +/- 0.07 (n = 7, 0 mV, pCa 6 to 6.8). The channel was also activated (Po increased from 0.03 to 0.37) in the presence of AMP-PNP, a nonphosphorylating ATP analogue, suggesting a direct G protein gating of KCa channels. Upon nucleotide activation, mean open time increased by a factor of 2.7 +/- 0.7 and mean closed time decreased by 0.2 +/- 0.07 of their initial values (n = 6). Norepinephrine (NE) or isoproterenol potentiated the GTP-mediated activation of KCa channels (Po increased from 0.17 +/- 0.06 to 0.35 +/- 0.07, n = 10). These results suggest that myometrium possesses beta-adrenergic receptors coupled to a GTP-dependent protein that can directly gate KCa channels. Furthermore, KCa channels, beta-adrenergic receptors, and G proteins can be reconstituted in lipid bilayers as a stable, functionally coupled, molecular complex.  相似文献   

12.
Aerobic exercise training is known to have profound cardioprotective effects in disease, yet cellular mechanisms remain largely undefined. We tested the hypothesis that increased sarcoplasmic reticulum Ca(2+) buffering and increased voltage-gated Ca(2+) channel density underlie coronary smooth muscle intracellular Ca(2+) (Ca(2+)(i)) dysregulation in diabetic dyslipidemia and that exercise training would prevent these increases. Yucatan swine were maintained in 1) control, 2) alloxan-induced hyperglycemic, 3) high fat/cholesterol fed, 4) hyperglycemic plus high fat/cholesterol fed (diabetic dyslipidemic), and 5) diabetic dyslipidemic plus exercise-trained (treadmill running) conditions. After 20 wk, the heart was removed and smooth muscle cells isolated from the right coronary artery. We utilized fura-2 imaging of Ca(2+)(i) levels to separate the functional role of the sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) from the Na(+)-Ca(2+) exchanger and the plasmalemmal Ca(2+)-ATPase, and whole-cell patch clamp to examine voltage-gated Ca(2+) channel current density (i.e., Ca(2+) influx). Results indicated that diabetic dyslipidemia impaired plasmalemmal Ca(2+) efflux, increased basal Ca(2+)(i) levels, increased SERCA protein and sarcoplasmic reticulum Ca(2+)(i) buffering, and elicited an approximately 50% decrease in voltage-gated Ca(2+) channel current density. Exercise training concurrent with the diabetic dyslipidemic state restored plasmalemmal Ca(2+) efflux, SERCA protein, sarcoplasmic reticulum Ca(2+)(i) buffering, and voltage-gated Ca(2+) channel current density to control levels. Interestingly, basal Ca(2+)(i) levels were significantly lower in the exercise-trained group compared with control. Collectively, these results demonstrate a crucial role for exercise in the prevention of diabetic dyslipidemia-induced Ca(2+)(i) dysregulation.  相似文献   

13.
The current study was aimed to study the effect of curcumin on the expression levels of brain glucose transporter 1 protein (GLUT1) and femoral muscle glucose transporter 4 protein (GLUT4), in addition to study its possible therapeutic role in ameliorating insulin resistance and the metabolic disturbance in the obese and type 2 diabetic male albino Wistar rat model. Diabetes was induced by a high-fat (HF) diet with low dose streptozotocin (STZ). Curcumin was administered intragastrically for 8 weeks (80 mg/kg BW/day). The HF-diet group developed obesity, hyperglycemia, hyperinsulinemia, reduced liver glycogen content with significant dyslipidemia. In the diabetic control group, hyperglycemia and insulin resistance high calculated homeostasis model assessment (HOMA-IR-index score) were pronounced, with reductions in liver and muscle glycogen contents, concomitant with dyslipidemia and significantly elevated malondialdehyde levels in liver and pancreas. GLUT1 and GLUT4 were down-regulated in the obese and the diabetic control groups, respectively. Curcumin, showed glucose-lowering effect and decreased insulin resistance, dyslipidemia and malondialdehyde levels in both tissues, it increased liver & muscle glycogen contents, compared to the diabetic control. Curcumin significantly up-regulated GLUT4 gene expression, compared to the diabetic control group. In conclusions, these results indicate a therapeutic role of curcumin in improving the diabetic status, obesity and enhancing the expression of GLUT4 gene.  相似文献   

14.
To examine endogenous factors affecting the development of the massive bronchoconstriction in the postmortem guinea pig lung, 58 anesthetized open-chest animals were divided into three groups: 1) exsanguination only (n = 13), 2) pulmonary perfusion with 5% dextran and 1% bovine serum albumin (BSA) in Tyrode's solution (Ca2+ perfusate) (n = 21), and 3) pulmonary perfusion with 5% dextran and 1% BSA in saline (Ca2+-free perfusate) (n = 24). These groups were further divided into several subgroups according to treatments: 1) substance P depletion by chronic administration of capsaicin, 2) acute capsaicin treatment to release substance P, 3) dazoxiben treatment to block endogenous synthesis of thromboxane A2, 4) diethylcarbamazine treatment to eliminate leukotriene (LT) synthesis, and 5) FPL 55712 treatment to antagonize actions of LT. Vital capacity from the deflation pressure-volume (PV) curve of the lung was used as the indicator of bronchoconstriction. Most PV curves were performed for 30 min following exsanguination or artificial perfusion. Ca2+-free perfusate enhanced the airway spasm at 5-10 min, but the spasm disappeared gradually after 10 min. Substance P depletion significantly decreased (P less than 0.01) the bronchial constriction at 20-30 min, whereas substance P release induced severe airway spasm (P less than 0.01) during the entire study. In addition, FPL 55712 reduced the bronchospasm (P less than 0.05) in Ca2+ perfusate at 30 min. Thus Ca2+ and several endogenous mediators may be involved with the airway spasm of the postmortem guinea pig lung.  相似文献   

15.
目的:探讨急性和慢性运动对2型糖尿病(T2DM)大鼠脂肪组织明磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(AKT)/葡萄糖运载体4(GLUT4)信号通路的影响。方法:15月龄SD雄性大鼠52只随机分为正常对照组(n=13)和高脂组(n=39),分别喂养普通和高脂饲料。8周后,高脂组体重>正常对照组20%,注射小剂量STZ后,血糖>16.7 mmol/l,造模成功。将糖尿病模型组随机分为糖尿病对照组(DC,n=13),糖尿病慢性运动组(DCE,n=13),糖尿病急性运动组(DAE,n=13)。DCE组进行8周的游泳运动,DAE组进行一次性游泳运动。测定血脂,血糖和血清胰岛素,Western blot法测定脂肪PI3K、AKT和GLUT4蛋白含量。结果:糖尿病组体重、血脂、血糖、胰岛素显著高于正常对照组(P均<0.01);高密度脂蛋白胆固醇(HDL-C)水平降低(P<0.05),脂肪组织中PI3K、AKT和GLUT4蛋白表达下降(P均<0.01)。糖尿病慢性运动组体重、血脂、血糖、胰岛素均出现显著性下降(P均<0.01);HDL-C升高(P<0.05),脂肪PI3K、AKT和GLUT4蛋白表达上升(P<0.01)。糖尿病急性运动组血脂、血糖、胰岛素下降(P均<0.05);HDL-C升高(P<0.05),脂肪PI3K、AKT和GLUT4含量显著上升(P均<0.05)。结论:①高脂饮食结合小剂量STZ诱导的T2DM大鼠脂肪组织PI3K/AKT通路受损,降低了胰岛素的敏感性。②急性、慢性有氧运动,均可以通过PI3K/AKT通路,改善糖脂代谢紊乱,慢性运动略优于急性运动。  相似文献   

16.
KCa3.1 is an intermediate conductance Ca2+-activated K+ channel that is expressed predominantly in hematopoietic cells, smooth muscle cells, and epithelia where it functions to regulate membrane potential, Ca2+ influx, cell volume, and chloride secretion. We recently found that the KCa3.1 channel also specifically requires phosphatidylinositol-3 phosphate [PI(3)P] for channel activity and is inhibited by myotubularin-related protein 6 (MTMR6), a PI(3)P phosphatase. We now show that PI(3)P indirectly activates KCa3.1. Unlike KCa3.1 channels, the related KCa2.1, KCa2.2, or KCa2.3 channels do not require PI(3)P for activity, suggesting that the KCa3.1 channel has evolved a unique means of regulation that is critical for its biological function. By making chimeric channels between KCa3.1 and KCa2.3, we identified a stretch of 14 amino acids in the carboxy-terminal calmodulin binding domain of KCa3.1 that is sufficient to confer regulation of KCa2.3 by PI(3)P. However, mutation of a single potential phosphorylation site in these 14 amino acids did not affect channel activity. These data together suggest that PI(3)P and these 14 amino acids regulate KCa3.1 channel activity by recruiting an as yet to be defined regulatory subunit that is required for Ca2+ gating of KCa3.1.  相似文献   

17.
目的:通过研究红细胞膜流动性以及红细胞骨架结构的改变,进一步探讨高脂血症大鼠红细胞变形能力改变的机制。方法:16只Wistar大鼠随机分为两组:高血症组和对照组。高脂组给予高脂饮食。16周后,腹主动脉采血,采用酶比色法检测血浆甘油三脂、胆固醇含量;并利用激光衍射法测定红细胞变形指数、取向指数,荧光偏振法测定红细胞膜流动性,激光共聚焦显微镜观测红细胞骨架改变和红细胞F-actin的含量。结果:发现高脂血症大鼠红细胞的变形指数、取向指数以及红细胞膜的流动性显著降低(P<0.05),红细胞形态和骨架发生改变,F-actin含量显著降低(P<0.05)。结论:高脂血症大鼠红细胞变形能力降低与红细胞膜结构改变有一定的关系。  相似文献   

18.

[Purpose]

The purpose of this study was to investigate whether moderate exercise and quercetin intake with a low fat diet contribute to inflammatory cytokine production, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice.

[Methods]

Male C57BL/6 mice were randomly divided into four groups: (1) High-fat for 12 weeks and low-fat diet control (C; n = 6); (2) high-fat diet for 12 weeks and low-fat diet with quercetin (Q; n = 4); (3) high-fat diet for 12 weeks and low-fat diet with exercise (E; n = 4); or (4) high-fat diet for 12 weeks and low-fat diet with exercise and quercetin (EQ; n = 5). Quercetin (10 mg/kg) was administered once per day, 5 day/week for 8 weeks. Exercise training was performed at moderate intensity for 8 weeks, 5 days/week for 30–60 min/day. Mice were subjected to a strenuous exercise bout of 60 min at a speed of 25 m/min (VO2 max 85%) conducted as an exercise-induced fatigue just before sacrifice.

[Results]

As results, body weights were significantly different among the groups. Exercise training significantly reduced inflammatory cytokines after strenuous exercise in skeletal muscle of high-fat diet mice. Exercise training increased Tfam mRNA in the soleus muscle after strenuous exercise. Exercise training significantly decreased lipogenesis markers in skeletal muscle of obese mice after strenuous exercise. Moderate exercise significantly increased lipolysis markers in the tibialis anterior muscle.

[Conclusion]

These findings suggest that exercise training reduced inflammatory cytokine levels and improved mitochondrial biogenesis and lipid metabolism. However quercetin supplementation did not affect these parameters. Thus, long-term moderate exercise training has positive effects on obesity.  相似文献   

19.
A peptidyl inhibitor of the high conductance Ca(2+)-activated K+ channels (KCa) has been purified to homogeneity from the venom of the scorpion Androctonus mauretanicus mauretanicus. The peptide has been named kaliotoxin (KTX). It is a single 4-kDa polypeptide chain. Its complete amino acid sequence has been determined. KTX displays sequence homology with other scorpion-derived inhibitors of Ca(2+)-activated or voltage-gated K+ channels: 44% homology with charybdotoxin (CTX), 52% with noxiustoxin (NTX), and 44% with iberiotoxin (IbTX). Electrophysiological experiments performed in identified nerve cells from the mollusc Helix pomatia showed that KTX specifically suppressed the whole cell Ca(2+)-activated K+ current. KTX had no detectable effects on voltage-gated K+ current (delayed rectifier and fast transient A current) or on L-type Ca2+ currents. KTX interacts in a one-to-one way with KCa channels with a Kd of 20 nM. Single channel experiments were performed on high conductance KCa channels excised from the above Helix neurons and from rabbit coeliac ganglia sympathetic neurons. KTX acted exclusively at the outer face of the channel. KTX applied on excised outside-out KCa channels induced a transient period of fast-flicker block followed by a persistent channel blockade. The KTX-induced block was not voltage-dependent which suggests differences in the blockade of KCa channels by KTX and by CTX. Comparison of KTX and CTX sequences leads to the identification of a short amino acid sequence (26-33) which may be implicated in the toxin-channel interaction. KTX therefore appears to be a useful tool for elucidating the molecular pharmacology of the high conductance Ca(2+)-activated K+ channel.  相似文献   

20.
To improve our understanding of the physiological roles of parvalbumins, PA-1 (pI 4.78) and PA-2 (pI 4.97) parvalbumins were prepared from bullfrog skeletal muscle and their calcium binding properties were examined in a medium of constant ionic strength (I = 0.106, pH 6.80, at 20 degrees C) containing various concentrations of Mg2+ by using a metallo-indicator, tetramethylmurexide. Apparent binding constants for Ca2+ in the presence of Mg2+ changed in the manner expected if Ca2+ and Mg2+ compete for two independent homogeneous binding sites. The following values were obtained: for PA-1, KCa = 1 X 10(7) M-1, KMg = 900 M-1; for PA-2, KCa = 6 X 10(6) M-1, KMg = 830 M-1 (I = 0.106, pH 6.80, at 20 degrees C). The apparent binding constants are strongly dependent on temperature: at 10 degrees C for PA-1, KCa = 2 X 10(8) M-1, KMg = 10(4) M-1; for PA-2, KCa = 5 X 10(7) M-1, KMg = 5 X 10(3) M-1 (I = 0.106, pH 6.80). The dependence of the affinities for Ca2+ on ionic strength is similar to or less than that of GEDTA (EGTA). The affinities for Ca2+ and Mg2+ of parvalbumins are unchanged between pH 6.5 and 7.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号