共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
NADP-malic enzyme (NADP-ME, EC 1.1.1.40) functions in many different pathways in plant and may be involved in plant defense
such as wound and UV-B radiation. Here, expression of the gene encoding cytosolic NADP-ME (cytoNADP-ME, GenBank Accession No. AY444338) in rice (Oryza sativa L.) seedlings was induced by salt stress (NaCl). NADP-ME activities in leaves and roots of rice also increased in response
to NaCl. Transgenic Arabidopsis plants over-expressing rice cytoNADP-ME had a greater salt tolerance at the seedling stage than wild-type plants in MS medium-supplemented with different levels
of NaCl. Cytosolic NADPH/NADP+ concentration ratio of transgenic plants was higher than those of wild-type plants. These results suggest that rice cytoNADP-ME confers salt tolerance in transgenic Arabidopsis seedlings. 相似文献
3.
Sumita Kumari Prabhjeet Singh Sneh L. Singla-Pareek Ashwani Pareek 《Molecular biotechnology》2009,42(2):195-204
4.
de Wilde C Uzan E Zhou Z Kruus K Andberg M Buchert J Record E Asther M Lomascolo A 《Transgenic research》2008,17(4):515-527
Laccases have numerous biotechnological applications, among them food processing. The widespread use of laccases has increased the demand for an inexpensive and safe source of recombinant enzyme. We explored the use of a rice-based system for the production of two fungal laccases derived from the ascomycete Melanocarpus albomyces and the basidiomycete Pycnoporus cinnabarinus. High-expression levels of active recombinant laccases were achieved by targeting expression to the endosperm of rice seeds. The laccase cDNAs were fused to a plant-derived signal sequence for targeting to the secretory pathway, and placed under the control of a constitutive seed-specific promoter fused to an intron for enhanced expression. This construct enabled the recovery of on average 0.1-1% of soluble laccase in total soluble proteins (TSP). The highest yields of recombinant laccases obtained in rice seeds were 13 and 39 ppm for riceMaL and ricePycL, respectively. The rice-produced laccases were purified and characterized. The wild-type and the recombinant proteins showed similar biochemical features in terms of molecular mass, pI, temperature and optimal pH and the N-terminus was correctly processed. Although presenting lower kinetic parameters, the rice-produced laccases were also suitable for the oxidative cross-linking of a food model substrate [maize-bran feruloylated arabinoxylans (AX)]. 相似文献
5.
Expression of a carbonic anhydrase gene is induced by environmental stresses in Rice (<Emphasis Type="Italic">Oryza sativa</Emphasis> L.) 总被引:2,自引:0,他引:2
Expression of the gene (OsCA1) coding for carbonic anhydrase (CA) in leaves and roots of rice was induced by environmental stresses from salts (NaCl, NaHCO3 and Na2CO3), and osmotic stress (10%, w/v, PEG 6000). CA activity of rice seedlings more than doubled under some of these stresses.
Transgenic Arabidopsis over-expressing OsCA1 had a greater salt tolerance at the seedling stage than wild-type plants in 1/2 MS medium with 5 mM NaHCO3, 50 mM NaCl, on 100 mM NaCl. Thus CA expression responds to environmental stresses and is related to stress tolerance in
rice. 相似文献
6.
Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification
of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic
plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis
thaliana
AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type
plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants
exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations
of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those
of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin
synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does
not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants. 相似文献
7.
Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic <Emphasis Type="Italic">Arabidopsis</Emphasis> 总被引:1,自引:0,他引:1
In order to determine the different roles of rice (Oryza sativa L.) cytosolic ascorbate peroxidases (OsAPXa and OsAPXb, GenBank accession nos. D45423 and AB053297, respectively) under salt stress, transgenic Arabidopsis plants over-expressing OsAPXa or OsAPXb were generated, and they all exhibited increased tolerance to salt stress compared to wild-type plants. Moreover, transgenic
lines over-expressing OsAPXb showed higher salt tolerance than OsAPXa transgenic lines as indicated by root length and total chlorophyll content. In addition to ascorbate peroxidase (APX) activity,
antioxidant enzyme activities of catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR), which are also
involved in the salt tolerance process, and the content of H2O2 were also assayed in both transgenic and wild-type plants. The results showed that the overproduction of OsAPXb enhanced and maintained APX activity to a much higher degree than OsAPXa in transgenic Arabidopsis during treatment with different concentrations of NaCl, enhanced the active oxygen scavenging system, and protected plants
from salt stress by equilibrating H2O2 metabolism. Our findings suggest that the rice cytosolic OsAPXb gene has a more functional role than OsAPXa in the improvement of salt tolerance in transgenic plants.
Zhenqiang Lu and Dali Liu contributed equally. 相似文献
8.
In the present investigation, we studied the possible potentiating effect of salicylic acid (SA) under Cd toxicity in Oryza sativa L. leaves. Cd treatments for 24 h reduced the shoot length, dry biomass and total chlorophyll content followed by high Cd
accumulation in shoots. About 16 h presoaking with SA resulted in partial protection against Cd, as observed by minor changes
in length, biomass and total chlorophyll. SA priming resulted in low Cd accumulation. Enhanced thiobarbituric acid reactive
substances (TBARS), hydrogen peroxide (H2O2) and superoxide anion (O2
−) content were seen when Cd was applied alone, while under SA priming the extent of TBARS, H2O2 and O2
− were significantly low, suggesting SA-regulated protection against oxidative stress. The antioxidant enzymes like Catalase
(CAT), guaiacol peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD) showed varied activities under
Cd alone. CAT activity increased after Cd treatment, followed by a decline in GPX and GR activity. SOD also declined at the
highest concentrations with an initial increase. Under SA-priming conditions, the efficiency of the antioxidant enzymes was
significantly elevated. GPx and SOD activity showed significant increase in activity. The ascorbate activity increased after
Cd treatment, followed by a decline in glutathione under SA-free condition. SA priming showed gradual increase in these non-enzymic
antioxidants. Our results indicate that Cd-induced oxidative stress can be regulated by SA. 相似文献
9.
Ventelon-Debout M Nguyen TT Wissocq A Berger C Laudie M Piégu B Cooke R Ghesquière A Delseny M Brugidou C 《Molecular genetics and genomics : MGG》2003,270(3):253-262
Several cDNA libraries were constructed using mRNA isolated from roots, panicles, cell suspensions and leaves of non-stressed Oryza sativa indica (IR64) and japonica (Azucena) plants, from wounded leaves, and from leaves of both cultivars inoculated with Rice Yellow Mottle Virus (RYMV). A total of 5549 cleaned expressed sequence tags (ESTs) were generated from these libraries. They were classified into functional categories on the basis of homology, and analyzed for redundancy within each library. The expression profiles represented by each library revealed great differences between indica and japonica backgrounds. EST frequencies during the early stages of RYMV infection indicated that changes in the expression of genes involved in energy metabolism and photosynthesis are differentially accentuated in susceptible and partially resistant cultivars. Mapping of these ESTs revealed that several co-localize with previously described resistance gene analogs and QTLs (quantitative trait loci). 相似文献
10.
Toriba T Harada K Takamura A Nakamura H Ichikawa H Suzaki T Hirano HY 《Molecular genetics and genomics : MGG》2007,277(5):457-468
Members of the YABBY gene family have a general role that promotes abaxial cell fate in a model eudicot, Arabidopsis thaliana. To understand the function of YABBY genes in monocots, we have isolated all YABBY genes in Oryza sativa (rice), and revealed the spatial and temporal expression pattern of one of these genes, OsYABBY1. In rice, eight YABBY genes constitute a small gene family and are classified into four groups according to sequence similarity, exon-intron structure, and organ-specific expression patterns. OsYABBY1 shows unique spatial expression patterns that have not previously been reported for other YABBY genes, so far. OsYABBY1 is expressed in putative precursor cells of both the mestome sheath in the large vascular bundle and the abaxial sclerenchyma in the leaves. In the flower, OsYABBY1 is specifically expressed in the palea and lemma from their inception, and is confined to several cell layers of these organs in the later developmental stages. The OsYABBY1-expressing domains are closely associated with cells that subsequently differentiate into sclerenchymatous cells. These findings suggest that the function of OsYABBY1 is involved in regulating the differentiation of a few specific cell types and is unrelated to polar regulation of lateral organ development. 相似文献
11.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae. 相似文献
12.
Ni Chen Yan Liu Xin Liu Juan Chai Zhong Hu Guangqin Guo Heng Liu 《Plant Molecular Biology Reporter》2009,27(3):321-333
13.
14.
Sushil Kumar Raghvendra Kumar Mishra Anil Kumar Suchi Srivastava Swati Chaudhary 《Planta》2009,230(3):449-458
Pisum sativum L., the garden pea crop plant, is serving as the unique model for genetic analyses of morphogenetic development of stipule,
the lateral organ formed on either side of the junction of leafblade petiole and stem at nodes. The stipule reduced (st) and cochleata (coch) stipule mutations and afila (af), tendril-less (tl), multifoliate-pinna (mfp) and unifoliata-tendrilled
acacia (uni-tac) leafblade mutations were variously combined and the recombinant genotypes were quantitatively phenotyped for stipule morphology
at both vegetative and reproductive nodes. The observations suggest a role of master regulator to COCH in stipule development. COCH is essential for initiation, growth and development of stipule, represses the UNI-TAC, AF, TL and MFP led leafblade-like morphogenetic pathway for compound stipule and together with ST mediates the developmental pathway for
peltate-shaped simple wild-type stipule. It is also shown that stipule is an autonomous lateral organ, like a leafblade and
secondary inflorescence. 相似文献
15.
Jianming Gao Qiang Xiao Liping Ding Mingjie Chen Liang Yin Jinzhi Li Shiyi Zhou Guangyuan He 《Plant Growth Regulation》2008,56(1):89-95
To evaluate oxidative stress and the plant antioxidant system of Alternanthera philoxeroides [Mart.] Griseb and Oryza sativa L. in the response to drought, root and leaf tissues of drought-treated A. philoxeroides and O. sativa were collected and relative water content, stomatal conductance, the concentrations of malondialdehyde, proline and the activities
of superoxide dismutase, peroxidases, catalase and total antioxidative activity investigated. The results showed that drought
treatment had almost no effect on relative water content in A. philoxeroides but reduced relative water content in O. sativa.
A. philoxeroides maintained a greater stomatal conductance than O. sativa under drought stress. In A. philoxeroides levels of lipid peroxidation were lower than in O. sativa and did not change during the experiment. After exposure to drought, concentrations of proline and activities of superoxide
dismutase, peroxidases and catalase in A. philoxeroides were between 10% and 30% higher than in O. sativa, whereas total antioxidative activity in A. philoxeroides was several-fold higher than in O. sativa. 相似文献
16.
A thermo-sensitive chlorophyll deficient mutant was isolated from more than 15,000 transgenic rice lines. The mutant displayed
normal phenotype at 23°C or lower temperature (permissive temperature). However, when grown at 26°C or higher (nonpermissive
temperature) the plant exhibited an abnormal phenotype characterized by yellow green leaves. Genetic analysis revealed that
a single nuclear-encoded recessive gene is responsible for the mutation, which is tentatively designed as cde1(t) (chlorophyll deficient 1, temporally). PCR analysis and hygromycin resistance assay indicated the mutation was not caused by T-DNA insertion. To isolate
the cde1(t) gene, a map-based cloning strategy was employed and 15 new markers (five SSR and ten InDels markers) were developed. A high-resolution
physical map of the chromosomal region around the cde1(t) gene was made using F2 and F3 population consisting of 1,858 mutant individuals. Finally, the cde1(t) gene was mapped in 7.5 kb region between marker ID10 and marker ID11 on chromosome 2. Sequence analysis revealed only one
candidate gene, OsGluRS, in the 7.5 kb region. Cloning and sequencing of the target region from the cde1(t) mutant showed that a missense mutation occurred in the mutant. So the OsGluRS gene (TIGR locus Os02 g02860) which encode glutamyl-tRNA synthetase was identified as the Cde1(t) gene. 相似文献
17.
Liu X Yang Q Lin F Hua L Wang C Wang L Pan Q 《Molecular genetics and genomics : MGG》2007,278(4):403-410
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum
resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis
were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible)
ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed.
The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance
(R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region
anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940
in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference
sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from
the Pita/Pita
2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial
chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map
of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further
characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese
isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning.
Xinqiong Liu and Qinzhong Yang contributed equally to this work. 相似文献
18.
The SNAP25-type proteins belong to the superfamily of the SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and function as important components of the vesical trafficking machinery in eukaryotic cells. In this paper, we report the cloning and expression characterization of OsSNAP32 gene, and the subcellular localization of its encoded protein. The OsSNAP32 gene contains five exons and four introns, and is located between RFLP markers C12276S and S1917 on chromosome 2 in rice. The OsSNAP32 has a molecular weight of 31.3 kD, comprises 283 amino acid residues, and contains Qb-SNARE and Qc-SNARE domains in the N- and C-terminal, respectively. Multiple sequence alignment of the SNARE domains indicates that OsSNAP32 protein is homologous to HvSNAP34 and HvSNAP28 (63% and 55% of amino acid identity respectively) from barley. The transient expression method in onion epidermal cells, revealed that OsSNAP32 is located in the plasma membrane, like other SNAP25-type proteins. Semi-quantitative RT-PCR assay showed that the OsSNAP32 is highly expressed in leaves and culms, and low in roots of rice, while hardly detected in immature spikes and flowering spikes. The expression of OsSNAP32 was significantly activated in rice seedlings treated with H2O2, PEG6000, and low temperature or after inoculation with rice blast (Magnaporthe grisea strain Hoku 1). The results suggest that this gene belongs to a novel member of this gene family encoding SNAP25-type proteins, involved in the rice responses to biotic and abiotic stresses. 相似文献
19.
Kirch HH Schlingensiepen S Kotchoni S Sunkar R Bartels D 《Plant molecular biology》2005,57(3):315-332