首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tall fescue (Festuca arundinacea Schreb.) is commonly grown as forage and turf grass in the temperate regions of the world. Here, we report the first genetic map of tall fescue constructed with PCR-based markers. A combination of amplified fragment length polymorphisms (AFLPs) and expressed sequence tag-simple sequence repeats (EST-SSRs) of both tall fescue and those conserved in grass species was used for map construction. Genomic SSRs developed from Festuca × Lolium hybrids were also mapped. Two parental maps were initially constructed using a two-way pseudo-testcross mapping strategy. The female (HD28-56) map included 558 loci placed in 22 linkage groups (LGs) and covered 2,013 cM of the genome. In the male (R43-64) map, 579 loci were grouped in 22 LGs with a total map length of 1,722 cM. The marker density in the two maps varied from 3.61 cM (female parent) to 2.97 (male parent) cM per marker. These differences in map length indicated a reduced level of recombination in the male parent. Markers that revealed polymorphism within both parents and showed 3:1 segregation ratios were used as bridging loci to integrate the two parental maps as a bi-parental consensus. The integrated map covers 1,841 cM on 17 LGs, with an average of 54 loci per LG, and has an average marker density of 2.0 cM per marker. Homoeologous relationships among linkage groups of six of the seven predicted homeologous groups were identified. Three small groups from the HD28-56 map and four from the R43-64 map are yet to be integrated. Homoeologues of four of those groups were detected. Except for a few gaps, markers are well distributed throughout the genome. Clustering of those markers showing significant segregation distortion (23% of total) was observed in four of the LGs of the integrated map.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

2.
A genetic map constructed from a population segregating for a trait of interest is required for QTL identification. The goal of this study was to construct a molecular map of tetraploid alfalfa (Medicago sativa.) using simple sequence repeat (SSR) markers derived primarily from expressed sequence tags (ESTs) and bacterial artificial chromosome (BAC) inserts of M. truncatula. This map will be used for the identification of drought tolerance QTL in alfalfa. Two first generation backcross populations were constructed from a cross between a water-use efficient, M. sativa subsp. falcata genotype and a low water-use efficient M. sativa subsp. sativa genotype. The two parents and their F1 were screened with 1680 primer pairs designed to amplify SSRs, and 605 single dose alleles (SDAs) were amplified. In the F1, 351 SDAs from 256 loci were mapped to 41 linkage groups. SDAs not inherited by the F1, but transmitted through the recurrent parents and segregating in the backcross populations, were mapped to 43 linkage groups, and 44 of these loci were incorporated into the composite maps. Homologous linkage groups were joined to form eight composite linkage groups representing the eight chromosomes of M. sativa. The composite maps consist of eight composite linkage groups with 243 SDAs from M. truncatula EST sequences, 38 SDAs from M. truncatula BAC clone sequences, and five SDAs from alfalfa genomic SSRs. The total composite map length is 624 cM, with average marker density per composite linkage group ranging from 1.5 to 4.4 cM, and an overall average density of 2.2 cM. Segregation distortion was 10%, and distorted loci tended to cluster on individual homologues of several linkage groups. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
Four individual linkage maps were constructed from two crosses for the species complex Picea mariana (Mill.) B.S.P. × Picea rubens Sarg in order to integrate their information into a composite map and to compare with other Pinaceae. For all individual linkage maps, 12 major linkage groups were recovered with 306 markers per map on average. Before building the composite linkage map, the common male parent between the two crosses made it possible to construct a reference linkage map to validate the relative position of homologous markers. The final composite map had a length of 2,319 cM (Haldane) and contained a total of 1,124 positioned markers, including 1,014 AFLPs, 3 RAPDs, 53 SSRs, and 54 ESTPs, assembled into 12 major linkage groups. Marker density of the composite map was statistically homogenous and was much higher (one marker every 2.1 cM) than that of the individual linkage maps (one marker every 5.7 to 7.1 cM). Synteny was well conserved between individual, reference, and composite linkage maps and 94% of homologous markers were colinear between the reference and composite maps. The combined information from the two crosses increased by about 24% the number of anchor markers compared to the information from any single cross. With a total number of 107 anchor markers (SSRs and ESTPs), the composite linkage map is a useful starting point for large-scale genome comparisons at the intergeneric level in the Pinaceae. Comparisons of this map with those in Pinus and Pseudotsuga allowed the identification of one breakdown in synteny where one linkage group homoeologous to both Picea and Pinus corresponded to two linkage groups in Pseudotsuga. Implications for the evolution of the Pinaceae genome are discussed. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
Genetic maps functionally oriented towards disease resistance have been constructed in grapevine by analysing with a simultaneous maximum-likelihood estimation of linkage 502 markers including microsatellites and resistance gene analogs (RGAs). Mapping material consisted of two pseudo-testcrosses, ‘Chardonnay’ × ‘Bianca’ and ‘Cabernet Sauvignon’ × ‘20/3’ where the seed parents were Vitis vinifera genotypes and the male parents were Vitis hybrids carrying resistance to mildew diseases. Individual maps included 320–364 markers each. The simultaneous use of two mapping crosses made with two pairs of distantly related parents allowed mapping as much as 91% of the markers tested. The integrated map included 420 Simple Sequence Repeat (SSR) markers that identified 536 SSR loci and 82 RGA markers that identified 173 RGA loci. This map consisted of 19 linkage groups (LGs) corresponding to the grape haploid chromosome number, had a total length of 1,676 cM and a mean distance between adjacent loci of 3.6 cM. Single-locus SSR markers were randomly distributed over the map (CD = 1.12). RGA markers were found in 18 of the 19 LGs but most of them (83%) were clustered on seven LGs, namely groups 3, 7, 9, 12, 13, 18 and 19. Several RGA clusters mapped to chromosomal regions where phenotypic traits of resistance to fungal diseases such as downy mildew and powdery mildew, bacterial diseases such as Pierce’s disease, and pests such as dagger and root-knot nematode, were previously mapped in different segregating populations. The high number of RGA markers integrated into this new map will help find markers linked to genetic determinants of different pest and disease resistances in grape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The availability of genetic maps and phenotypic data of segregating populations allows to localize and map agronomically important genes, and to identify closely associated molecular markers to be used in marker-assisted selection and positional cloning. The objective of the present work was to develop a durum wheat intervarietal genetic and physical map based on genomic microsatellite or genomic simple sequence repeats (gSSR) markers and expressed sequence tag (EST)-derived microsatellite (EST-SSR) markers. A set of 122 new EST-SSR loci amplified by 100 primer pairs was genetically mapped on the wheat A and B genome chromosomes. The whole map also comprises 149 gSSR markers amplified by 120 primer pairs used as anchor chromosome loci, two morphological markers (Black colour, Bla1, and spike glaucousness, Ws) and two seed storage protein loci (Gli-A2 and Gli-B2). The majority of SSR markers tested (182) was chromosome-specific. Out of 275 loci 241 loci assembled in 25 linkage groups assigned to the chromosomes of the A and B genome and 34 remained unlinked. A higher percentage of markers (54.4%), localized on the B genome chromosomes, in comparison to 45.6% distributed on the A genome. The whole map covered 1,605 cM. The B genome accounted for 852.2 cM of genetic distance; the A genome basic map spanned 753.1 cM with a minimum length of 46.6 cM for chromosome 5A and a maximum of 156.2 cM for chromosome 3A and an average value of 114.5 cM. The primer sets that amplified two or more loci mapped to homoeologous as well as to non-homoeologous sites. Out of 241 genetically mapped loci 213 (88.4%) were physically mapped by using the nulli-tetrasomic, ditelosomic and a stock of 58 deletion lines dividing the A and B genome chromosomes in 94 bins. No discrepancies concerning marker order were observed but the cytogenetic maps revealed in some cases small genetic distance covered large physical regions. Putative function for mapped SSRs were assigned by searching against GenBank nonredundant database using TBLASTX algorithms.  相似文献   

6.
白桦AFLP遗传连锁图谱的构建   总被引:4,自引:0,他引:4  
高福玲  姜廷波 《遗传》2009,31(2):213-218
以80个中国白桦(Betula platyphylla Suk)×欧洲白桦(Betula pendula Roth)的F1个体为作图群体, 利用扩增片段长度多态性(Amplified fragment length polymorphism, AFLP)标记, 按照拟测交作图策略, 分别构建了中国白桦和欧洲白桦的分子标记遗传连锁图谱。从64对AFLP引物组合中筛选出34对多态性丰富的引物组合, 这些入选的引物组合在分离群体中共检测到451个多态性位点。χ2检验结果表明, 有362个位点符合1∶1分离(拟测交分离位点), 41个位点符合3∶1分离, 20个位点符合1∶3分离, 28个位点属偏分离位点。在符合拟测交分离的位点中, 201个位点来自中国白桦, 161个位点来自欧洲白桦。利用2点连锁分析, 来自中国白桦的201个标记构成了14个连锁群(4个以上标记), 10个三连体和14个连锁对, 45个为非连锁位点, 连锁标记覆盖的总图距为1 296.1 cM, 平均图距15.5 cM。而来自欧洲白桦的161个标记构成了17个不同的连锁群(4个以上标记), 8个三连体和4个连锁对, 15个为非连锁位点, 连锁标记覆盖的总图距为1 035.8 cM, 平均图距12 cM。  相似文献   

7.
Simple sequence repeats (SSRs) are valuable molecular markers in many plant species. In common wheat (Triticum aestivum L.), which is characteristic of its large genomes and alloploidy, SSRs are one of the most useful markers. To increase SSR marker sources and construct an SSR-based linkage map of appropriate density, we tried to develop new SSR markers from SSR-enriched genomic libraries and the public database. SSRs having (GA)n and (GT)n motifs were isolated from enriched libraries, and di- and tri-nucleotide repeats were mined from expressed sequence tags (ESTs) and DNA sequences of Triticum species in the public database. Of the 1,147 primer pairs designed, 842 primers gave accurate amplification products, and 478 primers showed polymorphism among the nine wheat lines examined. Using a doubled haploid (DH) population from an intraspecific cross between Kitamoe and Münstertaler (KM), we constructed an SSR-based linkage map that consisted of 464 loci: 185 loci from genomic libraries, 65 loci from the sequence database including ESTs, 213 loci from the SSR markers already reported, and 1 locus of morphological marker. Although newly developed SSR loci were distributed throughout all chromosomes, clustering of them around putative centromeric regions was found on several chromosomes. The total length of the KM map spanned 3,441 cM and corresponded to approximately 86% genome coverage. The KM map comprised of 23 linkage groups because two gaps of over 50 cM distance remained on chromosome 6A. This is a first report of SSR-based linkage map using single intraspecific population of common wheat. This mapping result suggests that it becomes possible to construct linkage maps with sufficient genome coverage using only SSR markers without RFLP markers, even in an intraspecific population of common wheat. Moreover, the new SSR markers will contribute to the enrichment of molecular marker resources in common wheat.  相似文献   

8.
An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1?=?Discovery × TN10-8, C2?=?Fiesta × Discovery, C3?=?Discovery × Prima, C4?=?Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene® software. First, integrated female–male maps were built for each population using common female–male simple sequence repeat markers (SSRs). Then, common SSRs over populations were used for the consensus map integration. The integrated consensus map consists of 1,046 markers, of which 159 are SSR markers, distributed over 17 linkage groups reflecting the basic chromosome number of apple. The total length of the integrated consensus map was 1,032 cM with a mean distance between adjacent loci of 1.1 cM. Markers were proportionally distributed over the 17 linkage groups (χ 2?=?16.53, df?=?16, p?=?0.41). A non-uniform marker distribution was observed within all of the linkage groups (LGs). Clustering of markers at the same position (within a 1-cM window) was observed throughout LGs and consisted predominantly of only two to three linked markers. The four integrated female–male maps showed a very good colinearity in marker order for their common markers, except for only two (CH01h01, CH05g03) and three (CH05a02z, NZ02b01, Lap-1) markers on LG17 and LG15, respectively. This integrated consensus map provides a framework for performing quantitative trait locus (QTL) detection in a multi-population design and evaluating the genetic background effect on QTL expression.  相似文献   

9.
Japanese lawngrass (Zoysia japonica) and Manila grass (Z. matrella) are the two most important and commonly used Zoysia species. A consensus based SSR linkage map was developed for the genus by combining maps from each species. This used previously constructed maps for two Z. japonica populations and a new map from Z. matrella. The new SSR linkage map for Z. matrella was based on 86 F2 individuals and contained 213 loci and covered a map distance of 1,351.2 cM in 32 linkage groups. Comparison of the three linkage maps constructed from populations with different genetic backgrounds indicated that most markers exhibited a consensus order, although some intervals or regions displayed discrepancy in marker orders or positions. The integrated map comprises 507 loci with a mean interval of 4.1 cM, covering a map distance of 2,066.6 cM in 22 linkage groups. The SSR-based map will allow marker-assisted selection and be useful for the mapping and cloning of economically important genes or quantitative trait loci.  相似文献   

10.
梨遗传连锁图谱的构建及其与苹果图谱的比较   总被引:1,自引:0,他引:1  
以‘丰水’为母本、‘砀山酥梨’为父本杂交所得的F1代104株单体为作图群体,利用SSR分子标记进行遗传连锁分析,应用Jionmap 3.0作图软件,构建了一张包含104个SSR分子标记,分属于18个连锁群的梨遗传连锁图谱,覆盖梨基因组总长831.8cM,平均图距为8.0cM。根据定位到该图谱上的SSR标记与苹果‘Fiesta’图谱进行比较,25个共有的SSR标记将该图谱和苹果图谱各连锁群连接起来,这些标记不仅呈现良好的共线性而且它们之间的相对遗传距离也很相近。研究认为,SSR标记作为锚定引物,可以与不同物种的遗传图谱相比较整合,为不同物种之间遗传信息的转移提供参考依据;同时该研究为梨树相关性状的基因定位、分离以及克隆奠定了基础。  相似文献   

11.
白桦RAPD遗传连锁图谱的构建   总被引:3,自引:1,他引:3  
以80个来自欧洲白桦(Betula pendula Roth)×中国白桦(Betula platyphylla Suk)的F1个体为作图群体。利用2个亲本和10个F1个体对1,200个10 bp的随机寡核苷酸引物进行筛选, 确定了208个多态性引物。利用RAPD标记, 按照拟测交的作图策略, 分别构建了欧洲白桦和中国白桦的分子标记连锁图谱。对2个亲本和80个F1代作图群体进行随机扩增, 共获得了364个多态性位点。χ2检验结果表明有307个位点符合1∶1分离的拟测交分离, 26个位点符合3∶1分离, 31个位点属偏分离位点。拟测交位点中有145个位点来自欧洲白桦, 有162个位点来自中国白桦。利用2点连锁分析, 欧洲白桦中的145个连锁标记构成了14个不同的连锁群(4个以上标记), 6个三连体和6个连锁对, 37个为非连锁位点, 连锁标记覆盖的总图距为955.6 cM (centimorgan), 平均图距14.9 cM。而来自中国白桦的162个标记构成了15个连锁群(4个以上标记), 4个三连体和6个连锁对, 21个为非连锁位点, 连锁标记覆盖的总图距为1,545.8 cM (centimorgan), 平均图距15.2 cM。该图谱的建立为进一步将两个图谱整合为一个高密度图谱及重要基因的定位奠定了基础。  相似文献   

12.
用AFLP的方法分析中国白桦×欧洲白桦的78个F1个体,并按照拟测交作图策略,建立了中国白桦和欧洲白桦遗传连锁图谱。从群体的45对引物组合中分离出343个分离位点,χ^2检验表明,其中有311个符合1:1拟测交分离位点。在这些位点中168个来自中国白桦,143个来自欧洲白桦。软件分析表日月,中国白桦的168个位点构成9个连锁群,11个三联体和14个连锁对,55个为非连锁位点,连锁标记覆盖的总距离为1909.2cM,平均图距为16.9cM;来自欧洲白桦的143个位点构成12个连锁群,4个三联体和9个连锁对,21个为非连锁位点,连锁标记覆盖的总距离为1857.3cM,平均图距为15.2cM。  相似文献   

13.
We have developed an integrated map from five elite cultivars of Vitis vinifera L.; Syrah, Pinot Noir, Grenache, Cabernet Sauvignon and Riesling which are parents of three segregating populations. A new source of markers, SNPs, identified in ESTs and unique BAC-end sequences was added to the available IGGP reference set of SSRs. The complete integrated map comprises 1,134 markers (350 AFLP((R)), 332 BESs, 169 ESTs, 283 SSRs) spanning 1,443 cM over 19 linkage groups and shows a mean distance between neighbouring loci of 1.27 cM. Marker order was mainly conserved between the integrated map and the highly dense Syrah x Pinot Noir consensus map except for few inversions. Moreover, the marker order has been validated through the assembled genome sequence of Pinot Noir. We have also assessed the transferability of SNP-based markers among five V. vinifera varieties, enabling marker validation across different genotypes. This integrated map can serve as a fundamental tool for molecular breeding in V. vinifera and related species and provide a basis for studies of genome organization and evolution in grapevines.  相似文献   

14.
Y Q Wu  Yinghua Huang 《Génome》2007,50(1):84-89
Sorghum bicolor (L.) Moench is an important grain and forage crop grown worldwide. We developed a simple sequence repeat (SSR) linkage map for sorghum using 352 publicly available SSR primer pairs and a population of 277 F2 individuals derived from a cross between the Westland A line and PI 550610. A total of 132 SSR loci appeared polymorphic in the mapping population, and 118 SSRs were mapped to 16 linkage groups. These mapped SSR loci were distributed throughout 10 chromosomes of sorghum, and spanned a distance of 997.5 cM. More important, 38 new SSR loci were added to the sorghum genetic map in this study. The mapping result also showed that chromosomes SBI-01, SBI-02, SBI-05, and SBI-06 each had 1 linkage group; the other 6 chromosomes were composed of 2 linkage groups each. Except for 5 closely linked marker flips and 1 locus (Sb6_34), the marker order of this map was collinear to a published sorghum map, and the genetic distances of common marker intervals were similar, with a difference ratio 相似文献   

15.
Sugarcane (Saccharum spp.) is a clonally propagated outcrossing polyploid crop of great importance in tropical agriculture. Up to now, all sugarcane genetic maps had been developed using either full-sib progenies derived from interspecific crosses or from selfing, both approaches not directly adopted in conventional breeding. We have developed a single integrated genetic map using a population derived from a cross between two pre-commercial cultivars (‘SP80-180’ × ‘SP80-4966’) using a novel approach based on the simultaneous maximum-likelihood estimation of linkage and linkage phases method specially designed for outcrossing species. From a total of 1,118 single-dose markers (RFLP, SSR and AFLP) identified, 39% derived from a testcross configuration between the parents segregating in a 1:1 fashion, while 61% segregated 3:1, representing heterozygous markers in both parents with the same genotypes. The markers segregating 3:1 were used to establish linkage between the testcross markers. The final map comprised of 357 linked markers, including 57 RFLPs, 64 SSRs and 236 AFLPs that were assigned to 131 co-segregation groups, considering a LOD score of 5, and a recombination fraction of 37.5 cM with map distances estimated by Kosambi function. The co-segregation groups represented a total map length of 2,602.4 cM, with a marker density of 7.3 cM. When the same data were analyzed using JoinMap software, only 217 linked markers were assigned to 98 co-segregation groups, spanning 1,340 cM, with a marker density of 6.2 cM. The maximum-likelihood approach reduced the number of unlinked markers to 761 (68.0%), compared to 901 (80.5%) using JoinMap. All the co-segregation groups obtained using JoinMap were present in the map constructed based on the maximum-likelihood method. Differences on the marker order within the co-segregation groups were observed between the two maps. Based on RFLP and SSR markers, 42 of the 131 co-segregation groups were assembled into 12 putative homology groups. Overall, the simultaneous maximum-likelihood estimation of linkage and linkage phases was more efficient than the method used by JoinMap to generate an integrated genetic map of sugarcane. E.A. Kido, A.N. Meza and H.M.B. Souza contributed equally to this work.  相似文献   

16.
AFLP markers were obtained with 12 EcoRI/ MseI primer combinations on two independent F2 populations of Lactuca sativa ×Lactuca saligna. The polymorphism rates of the AFLP products between the two different L. saligna lines was 39%, between the two different L. sativa cultivars 13% and between the L. sativa and L. saligna parents on average 81%. In both F2 populations segregation distortion was found, but only Chromosome 5 showed skewness that was similar for both populations. Two independent genetic maps of the two F2 populations were constructed that could be integrated due to the high similarity in marker order and map distances of 124 markers common to both populations. The integrated map consisted of 476 AFLP markers and 12 SSRs on nine linkage groups spanning 854 cM. The AFLP markers on the integrated map were randomly distributed with an average spacing between markers of 1.8 cM and a maximal distance of 16 cM. Furthermore, the AFLP markers did not show severe clustering. This AFLP map provides good opportunities for use in QTL mapping and marker-assisted selection. Received: 13 July 2000 / Accepted: 19 January 2001  相似文献   

17.
An integrated DArT-SSR linkage map of durum wheat   总被引:2,自引:0,他引:2  
Genetic mapping in durum wheat (Triticum durum Desf.) is constrained by its large genome and allopolyploid nature. We developed a Diversity Arrays Technology (DArT) platform for durum wheat to enable efficient and cost-effective mapping and molecular breeding applications. Genomic representations from 56 durum accessions were used to assemble a DArT genotyping microarray. Microsatellite (SSR) and DArT markers were mapped on a durum wheat recombinant inbred population (176 lines). The integrated DArT-SSR map included 554 loci (162 SSRs and 392 DArT markers) and spanned 2022 cM (5 cM/marker on average). The DArT markers from durum wheat were positioned in respect to anchor SSRs and hexaploid wheat DArT markers. DArT markers compared favourably to SSRs to evaluate genetic relationships among the durum panel, with 1315 DArT polymorphisms found across the accessions. Combining DArT and SSR platforms provides an efficient and rapid method of generating linkage maps in durum wheat.  相似文献   

18.
The aim of the present work was to develop a microsatellite marker-based map of the Vitis vinifera genome (n=19), useful for genetic studies in this perennial heterozygous species, as SSR markers are highly transferable co-dominant markers. A total of 346 primer pairs were tested on the two parents (Syrah and Grenache) of a full sib population of 96 individuals (S × G population), successfully amplifying 310 markers. Of these, 88.4% markers were heterozygous for at least one of the two parents. A total of 292 primer pairs were then tested on Riesling, the parent of the RS1 population derived from selfing (96 individuals), successfully amplifying 299 markers among which 207 (62.9%) were heterozygous. Only 6.7% of the markers were homozygous in all three genotypes, stressing the interest of such markers in grape genetics. Four maps were constructed based on the segregation of 245 SSR markers in the two populations. The Syrah map was constructed from the segregations of 177 markers that could be ordered into 19 linkage groups (total length 1,172.2 cM). The Grenache map was constructed with the segregations of 178 markers that could be ordered into 18 linkage groups (total length 1,360.6 cM). The consensus S × G map was constructed with the segregations of 220 markers that were ordered into 19 linkage groups (total length 1,406.1 cM). One hundred and eleven markers were scored on the RS1 population, among them 27 that were not mapped using the S × G map. Out of these 111 markers, 110 allowed to us to construct a map of a total length of 1,191.7 cM. Using these four maps, the genome length of V. vinifera was estimated to be around 2,200 cM. The present work allowed us to map 123 new SSR markers on the V. vinifera genome that had not been ordered in a previous SSR-based map (Riaz et al. 2004), representing an average of 6.5 new markers per linkage group. Any new SSR marker mapped is of great potential usefulness for many applications such as the transfer of well-scattered markers to other maps for QTL detection, the use of markers in specific regions for the fine mapping of genes/QTL, or for the choice of markers for MAS.  相似文献   

19.
L. Cheng  L. Liu  X. Yu  D. Wang  J. Tong 《Animal genetics》2010,41(2):191-198
Common carp (Cyprinus carpio) is an important fish for aquaculture, but genomics of this species is still in its infancy. In this study, a linkage map of common carp based on Amplified Fragment Length Polymorphism (AFLP) and microsatellite (SSR) markers has been generated using gynogenetic haploids. Of 926 markers genotyped, 151 (149 AFLPs, two SSRs) were distorted and eliminated from the linkage analyses. A total of 699 AFLP and 20 microsatellite (SSR) markers were assigned to the map, which comprised 64 linkage groups and covered 5506.9 cM Kosambi, with an average interval distance of 7.66 cM Kosambi. The normality tests on interval map distances showed a non‐normal marker distribution. Visual inspection of the map distance distribution histogram showed a cluster of interval map distances on the left side of the chart, which suggested the occurrence of AFLP marker clusters. On the other hand, the lack of an obvious cluster on the right side showed that there were a few big gaps which need more markers to bridge. The correlation analysis showed a highly significant relatedness between the length of linkage group and the number of markers, indicating that the AFLP markers in this map were randomly distributed among different linkage groups. This study is helpful for research into the common carp genome and for further studies of genetics and marker‐assisted breeding in this species.  相似文献   

20.
The Asian Vigna group of grain legumes consists of six domesticated species, among them black gram is widely grown in South Asia and to a lesser extent in Southeast Asia. We report the first genetic linkage map of black gram [Vigna mungo (L.) Hepper], constructed using a BC1F1 population consisting of 180 individuals. The BC1F1 population was analyzed in 61 SSR primer pairs, 56 RFLP probes, 27 AFLP loci and 1 morphological marker. About 148 marker loci could be assigned to the 11 linkage groups, which correspond to the haploid chromosome number of black gram. The linkage groups cover a total of 783 cM of the black gram genome. The number of markers per linkage group ranges from 6 to 23. The average distance between adjacent markers varied from 3.5 to 9.3 cM. The results of comparative genome mapping between black gram and azuki bean show that the linkage order of markers is highly conserved. However, inversions, insertions, deletions/duplications and a translocation were detected between the black gram and azuki bean linkage maps. The marker order on parts of linkage groups 1, 2 and 5 is reversed between the two species. One region on black gram linkage group 10 appears to correspond to part of azuki bean linkage group 1. The present study suggests that the azuki bean SSR markers can be widely used for Asian Vigna species and the black gram genetic linkage map will assist in improvement of this crop.Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.The first three authors contributed equally to this research  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号