首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chalcones xanthohumol (X) and desmethylxanthohumol (DMX), present in hops (Humulus lupulus L.), and the corresponding flavanones isoxanthohumol (IX, from X), 8-prenylnaringenin (8-PN, from DMX), and 6-prenylnaringenin (6-PN, from DMX), have been examined in vitro for their anti-proliferative activity on human prostate cancer cells PC-3 and DU145. X proved to be the most active compound in inhibiting the growth of the cell lines with IC50 values of 12.3±1.1 μM for DU145 and 13.2±1.1 μM for PC-3. 6-PN was the second most active growth inhibitor, particularly in PC-3 cells (IC50 of 18.4±1.2 μM). 8-PN, a highly potent phytoestrogen, exhibited pronounced anti-proliferative effects on PC-3 and DU145 (IC50 of 33.5±1.0 and 43.1±1.2 μM, respectively), and IX gave comparable activities (IC50 of 45.2±1.1 μM for PC-3 and 47.4±1.1 μM for DU145). DMX was the least active compound. It was evidenced for the first time that this family of prenylated flavonoids from hops effectively inhibits proliferation of prostate cancer cells in vitro.  相似文献   

2.
Calophyllum brasiliense, Lonchocarpus oaxacensis, and Lonchocarpus guatemalensis are used in Latin American folk medicine. Four natural xanthones, an acetylated derivative, and two coumarins were obtained from C. brasiliense. Two flavanones were extracted from L. oaxacensis and one chalcone from L. guatemalensis. These compounds were tested as substrates and inhibitors for two recombinant sulfotransferases (SULTs) involved in the metabolism of many endogenous compounds and foreign chemicals. Assays were performed using recombinant phenol-sulfotransferase (SULT1A1) and hydroxysteroidsulfotransferase (SULT2A1). Three of the five xanthones, one of the flavonoids and the coumarins tested were substrates for SULT1A1. None of the xanthones or the flavonoids were sulfonated by SULT2A1, whereas the coumarin mammea A/BA was a substrate for this enzyme. The natural xanthones reversibly inhibited SULT1A1 with IC50 values ranging from 1.6 to 7 μM whereas much higher amounts of these compounds were required to inhibit SULT2A1 (IC50 values of 26-204 μM). The flavonoids inhibited SULT1A1 with IC50 values ranging from 9.5 to 101 μM, which compared with amounts needed to inhibit SULT2A1 (IC50 values of 11 to 101 μM). Both coumarins inhibited SULT1A1 with IC50 values of 47 and 185 μM, and SULT2A1 with IC50 values of 16 and 31 μM. The acetylated xanthone did not inhibit either SULT1A1 or SULT2A1 activity. Rotenone from a commercial source had potency comparable to that of the flavonoids isolated from Lonchocarpus for inhibiting both SULTs. The potency of this inhibition depends on the position and number of hydroxyls. The results indicate that SULT1A1, but not SULT2A1, is highly sensitive to inhibition by xanthones. Conversely, SULT2A1 is 3-6 times more sensitive to coumarins than SULT1A1. The flavonoids are non-specific inhibitors of the two SULTs.

Collectively, the results suggest that these types of natural products have the potential for important pharmacological and toxicological interactions at the level of phase-II metabolism via sulfotransferases.  相似文献   


3.
Aromatic analogs of arcaine were shown to have inhibitory effects on the binding of the channel blocking drug [3H]MK-801 to the NMDA receptor complex. The most potent compound of the series was an N,N′-bis(propyl)guanidinium which inhibited [3H]MK-801 binding with an IC50 of 0.58 μM and an IC50 of 12.17 μM upon addition of 100 μM spermidine. The increase in IC50 upon addition of spermidine suggests competitive antagonism between the inhibitor and spermidine at the arcaine-sensitive polyamine site of the NMDA receptor complex.  相似文献   

4.
In a search for an analogue of AAL-toxin with high phytotoxicity and low mammalian toxicity, aminopentols [(AP1), hexacetyl AP1 and N-acetyl AP1], and nine analogues (1–9), were tested for toxicity to duckweed (Lemna pausicostata), susceptible tomato (asc/asc) leaf discs, black nightshade leaf discs and mammalian cell lines, including dog kidney (MDCK), rat liver hepatoma (H4TG) and mouse fibroblasts (NIH3T3). These were compared with AAL-toxin and fumonisin B1 (FB1). Analogue 9 at 10 μM increased cellular leakage and chlorophyll loss from both tomato and black nightshade leaf discs. The diester 9 was the most active in the duckweed bioassay, but it was much less toxic to MDCK and H4TG cells with an IC50 of 200 μM compared to 10 μM for FB1. Analogue 9 and FB1 showed similar low toxicities (IC50 = 150 μM) to NIH3T3 cells. Among the substances tested, only analogue 9 had significant phytotoxicity and low mammalian toxicity, indicating some potential for development of safe and effective natural herbicides.  相似文献   

5.
A series of (E)-1-phenylbut-1-en-3-ones, based on the naturally occurring (E)-1-(4′-hydroxyphenyl)but-1-en-3-one [IC50 (K562) 60 μM], was synthesised and screened for cytotoxic activity against the K562 human leukaemia cell line. (E)-1-(Pentafluorophenyl)but-1-en-3-one [IC50 (K562) 1.8 μM] was found to be over 30-fold more active than 1.  相似文献   

6.
Pentachlorophenol (PCP) and 1-nitro-2-naphthol were found to be potent inhibitors of enzymatic acetyl-CoA dependent activation, which is suggested as proceeding through direct O-acetylation, of N-hydroxyarylamines to tRNA binding by liver cytosolic enzymes from hamsters and rats. IC50 values of PCP for the activation of 2-hydroxyamino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole (N-OH-Glu-P-1), 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (N-OH-Trp-P-2) and N-hydroxy-2-aminofluorene (N-OH-AF) were 20, 25 and 17 μM, respectively, in hamster cytosol system. Similar inhibition was observed with rat liver cytosol (IC50 values of PCP and 1-nitro-2-naphthol were 13 and 12 μM, respectively, for the binding of N-OH-Glu-P-1). PCP is known as an inhibitor of sulfotransferase; however, another potent inhibitor of sulfotransferase, 2,6-dichloro-4-nitrophenol, did not inhibit the acetyl-CoA dependent binding. Antibiotic thiolactomycin, which inhibits bacterial O-acetyltransferase, did not affect the activation by hamster and rat cytosol, indicating the difference in property between bacterial and mammalian enzymes. The kinetic data obtained with hamster cytosol suggested the competitive inhibition of PCP with substrate, N-OH-Glu-P-1, and non-competitive inhibition with acetyl-CoA. In addition to the O-acetylation, PCP and 1-nitro-2-naphthol also inhibited N-acetylation of arylamines and N, O-acetyltransfer reaction of N-hydroxy-2-acetylaminofluorene (N-OH-AAF) by hamster cytosol. IC50 values for these two types of acetyltransfer reactions, however, were slightly higher than those observed for acetyl-CoA dependent activations of N-hydroxyarylamines.  相似文献   

7.
Curcumin, a relatively non-toxic natural product isolated from Curcuma longa, is a modest inhibitor of the HIV-1 (1050 = 100 μM) and HIV-2 (IC50 = 250 μM) proteases. Simple modifications of the curcumin structure raise the IC50 value but complexes of the central dihydroxy groups of curcumin with boron lower the IC50 to a value as low as 6 μM. The boron complexes are also time-dependent inactivators of the HIV proteases. The increased affinity of the boron complexes may reflect binding of the orthogonal domains of the inhibitor in intersecting sites within the substrate-binding cavity of the enzyme, while activation of the ,β-unsaturated carbonyl group of curcumin by chelation to boron probably accounts for time-dependent inhibition of the enzyme.  相似文献   

8.
Anti-allergic substances from the rhizomes of Dioscorea membranacea   总被引:2,自引:0,他引:2  
Extracts of five species of Thai medicinal plants, locally known as Hua-Khao-Yen, were screened for anti-allergic activities using RBL-2H3 cells. Of the five species studied, the ethanolic extract of Dioscorea membranacea exhibited potent inhibitory activity against β-hexosaminidase release as a marker of degranulation in RBL-2H3 cells, with an IC50 value of 37.5 μg/mL. Eight compounds were isolated from this crude ethanolic extract, [two naphthofuranoxepins (1, 2), one phenanthraquinone (3), three steroids (4–6), and two steroidal saponins (7, 8)], and tested for their anti-allergic activities. The results showed that dioscorealide B (2) possessed the highest activity with an IC50 value of 5.7 μM, followed by dioscoreanone (3, IC50 = 7.7 μM), dioscorealide A (1, IC50 = 27.9 μM), and diosgenin (9, IC50 = 29.9 μM). Structure–activity relationship studies of naphthofuranoxepins on anti-allergic activity revealed that the hydroxylation at position 8 conferred higher activity than methoxylation. For diosgenin derivatives, the aglycone was found to possess higher activity than the diglucosylated molecule; whereas substitution with rhamnoglucosides apparently results in loss of activity. Furthermore, effects of dioscorealide A, dioscorealide B, and dioscoreanone on antigen-induced release of TNF- and IL-4 in the late phase reaction were also examined.  相似文献   

9.
In the present in vitro and in vivo study we investigated the pro-oxidant effects of hemoglobin, as well as the antioxidant effects of its metabolites, in the brain. Incubation of rat brain homogenates with hemoglobin (0-10 μM) but not hemin induced lipid peroxidation up to 24 h (EC50 = 1.2 μM). Hemoglobin's effects were similar to ferrous ion (EC50 = 1.7 μM) and were blocked by the chelating agent deferoxamine (IC50 = 0.5 μM) and a nitric oxide-releasing compound S-nitrosoglutathione (IC50 = 40 μM). However, metabolites of hemoglobin — biliverdin and bilirubin — inhibited brain lipid peroxidation induced by cell disruption and hemoglobin (biliverdin IC50 = 12-30 and bilirubin IC50 = 75-170 μM). Biliverdin's antioxidative effects in spontaneous and iron-evoked lipid peroxidation were further augmented by maganese (2 μM) since manganese is an antioxidative transition metal and conjugates with bile pigments. Intrastriatal infusion of hemoglobin (0-24 nmol) produced slight, but significant 20-22% decreases in striatal dopamine levels. Whereas, intrastriatal infusion of ferrous citrate (0-24 nmol) dose-dependently induced a greater 66% depletion of striatal dopamine which was preceded by an acute increase of lipid peroxidation. In conclusion, contrary to the in vitro results hemoglobin is far less neurotoxic than ferrous ions in the brain. It is speculated that hemoglobin may be partially detoxified by heme oxygenase and biliverdin reductase to its antioxidative metabolites in the brain. However, in head trauma and stroke, massive bleeding could significantly produce iron-mediated oxidative stress and neurodegeneration which could be minimized by endogenous antioxidants such as biliverdin, bilirubin, manganese and S-nitrosoglutathione.  相似文献   

10.
Phenanthrene imidazole 3 (MF63) has been identified as a novel potent, selective, and orally active mPGES-1 inhibitor. This new series was developed by lead optimization of a hit from an internal HTS campaign. Compound 3 is significantly more potent than the previously reported indole carboxylic acid 1 with an A549 whole cell IC50 of 0.42 μM (50% FBS) and a human whole blood IC50 of 1.3 μM. It exhibited a significant analgesic effect in a guinea pig hyperalgesia model when orally dosed at 30 and 100 mg/kg.  相似文献   

11.
CGS 20267 is a new non-steroidal compound which potently inhibits aromatase in vitro (IC50 of 11.5 nM) and in vivo (ED50 of 1–3 μg/kg p.o.). CGS 20267 maximally inhibits estradiol production in vitro in LH-stimulated hamster ovarian tissue at 0.1 μM with an IC50 of 0.02 μM and does not significantly affect progesterone production up to 350 μM. In ACTH-stimulated rat adrenal tissue in vitro, aldosterone production was inhibited with an IC50 of 210 μM (10,000 times higher than the IC50 for estradiol production); no significant effect on corticosterone production was seen at 350 μM. In vivo, in ACTH-treated rats, CGS 20267 does not affect plasma levels of corticosterone or aldosterone at a dose of 4 mg/kg p.o. (1000 times higher than the ED50 for aromatase inhibition in vivo). In adult female rats, a 14-day treatment with 1 mg/kg p.o. daily, completely interrupts ovarian cyclicity and suppresses uterine weight to that seen 14 days after ovariectomy. In adult female rats bearing estrogen-dependent DMBA-induced mammary tumors, 0.1 mg/kg p.o. given daily for 42 days caused almost complete regression of tumors present at the start of treatment. Thus compared to each other, CGS 16949A and CGS 20267 are both highly potent in inhibiting estrogen biosynthesis in vitro and in vivo. The striking difference between them is that unlike CGS 16949A, CGS 20267 does not affect adrenal steroidogenesis in vitro or in vivo, at concentrations and doses several orders of magnitude higher than those required to inhibit estrogen biosynthesis.  相似文献   

12.
In this study we seek to elucidate the interaction of capsaicin with the calmodulin mediated signal pathways in macrophages, by comparing its action on macrophage functions with a known calmodulin antagonist, fluphenazine. Kinetics of capsaicin uptake by macrophages (103 cells) revealed that a maximum of 200 μM capsaicin was taken up within 10 min. Ca2+ ionophore triggered generation of superoxide anion and hydrogen peroxide by macrophages was inhibited in a dose-dependent manner by fluphenazine (IC50, 20 μM and 12 μM, respectively) and also by capsaicin (IC50, 30 μM and 9 μM, respectively), suggesting an involvement of calmodulin in the regulation of NADPH oxidase. In vitro both fluphenazine and capsaicin inhibited Ca2+-Mg2+ ATPase and cAMP-phosphodiesterase from macrophages and this inhibition was reversed by exogenous addition of calmodulin. Fluorescence studies revealed a direct Ca2+ dependent interaction of capsaicin with calmodulin. From these results we suggest that capsaicin acts via calmodulin to inhibit stimulus-induced macrophage oxidative burst and also that calmodulin regulates the oxidative burst in macrophages.  相似文献   

13.
14.
A pair of -cyano analogues of decarboxylated S-adenosylmethionine (2a and 2b) were synthesized as potential enzyme activated, irreversible inhibitors of the[pyruvoyl enzyme S-adenosylmethionine decarboxylase (AdoMet-DC). Each of these analogues acts as an irreversible inactivator for ADoMet-DC from Escherichia coli (IC50 values of 9 and 50 μM, respectively). These analogues also inactivate human AdoMet-DC, with KI values of 246.6 and 7.2 μM, and kinact values of 0.29 and 0.03 min−1, respectively.  相似文献   

15.
Several substances with different inhibitory effects on adrenal steroid biosynthesis were investigated in patients with Cushing's syndrome. It has been shown that trilostane, a 3β-hydroxysteroid-dehydrogenase inhibitor, is not potent enough to block cortisol biosynthesis in patients with hypercortisolism. Aminoglutethimide inhibits side chain cleavage of cortisol synthesis, but it has been demonstrated that the blocking effect on cortisol secretion is not strong enough to normalize urinary cortisol excretion in patients with Cushing's disease. For metyrapone, an inhibitor of adrenal 11β-hydroxylase, promising results were reported for the treatment of Cushing's syndrome. However, the drug has several side effects and depending on the definition of the desired reduction of cortisol secretion a true remission was only found in a minority of patients. The antifungal drug ketoconazole in vitro predominantly blocks 17,20-desmolase (IC50 1 μM) and to a lesser extent 17-hydroxylase (IC50 10 μM) and 11β-hydroxylase (IC50 15–40 μM). Therefore, ketoconazole in vivo most potently suppresses androgen secretion and only to a lesser extent cortisol biosynthesis. Several therapeutic trials with ketoconazole treatment in patients with pituitary Cushing's disease showed various remission rates between 30 and 90%. In contrast, in almost all patients with benign, primary adrenal Cushing's syndrome cortisol levels were normalized. In patients with ectopic ACTH syndrome ketoconazole was effective in about 50% of all reported cases, while cortisol hypersecretion due to adrenocortical carcinoma was only rarely inhibited by ketoconazole. The main side effect of ketoconazole treatment was liver toxicity which occurred in 12% of all treated patients. In contrast to ketoconazole, the narcotic drug etomidate shows a strong inhibitory effect on 11β-hydroxylase (IC50 0.03–0.15 μM) but only a weak inhibition of 17,20 desmolase (IC50 380 μM). This correlates with in vivo studies where even low, non-hypnotic doses of etomidate induced a pronounced fall in serum cortisol levels in normals and in patients with Cushing's syndrome. However, its clinical use is limited by its mandatory intravenous application and its sedative effects. In conclusion, ketoconazole remains the only available steroid-inhibitory drug for a therapeutic trial in patients with Cushing's syndrome who cannot be treated definitively by surgery.  相似文献   

16.
A series of aliphatic and aromatic trifluoromethyl ketones has been tested as inhibitors of the antennal esterases of the Egyptian armyworm Spodoptera littoralis, by evaluation of the extent of hydrolysis of [1-3H]-(Z,E)-9, 11-tetradecadienyl acetate (1), a tritiated analog of the major component of the sex pheromone. The most active compounds with a long chain aliphatic structure were 3-octylthio-1,1,1-trifluoropropan-2-one (2) (IC50 0.55 μM) and 1,1,1-trifluorotetradecan-2-one (4) (IC50 1.16 μM). The aromatic compounds were generally less potent inhbitors than the coressponding aromatic ones, although β-naphthyltrifuloromethyl ketone (10) exhibited a remarkable inhibitory activity (IC50 7.9 μM). Compounds 2, 4 and 10 exhibit a competitive inhibition with Ki values of 2.51×10−5 M, 2.98×10−5 M and 2.49×10−4 M, respectively. Some of the trifluoromethyl ketones tested were slow-binding inhibitors and compounds 2 and 10 are described as inhibitors of the antennal esterases of a moth for the first time.  相似文献   

17.
Acanthifolicin (9,10-epithio-okadaic acid from Pandoras acanthifolium) inhibited protein phosphatase-1 (PP1) similarly to okadaic acid (IC50 = 20 nM and 19 nM, respectively) but was slightly less active against protein phosphatase-2A (PP2A) (IC50 1 nM and 0.2 nM, respectively). Methyl esterification of acanthifolicin sharply reduced its activity. PP2A was inhibited with an IC50 = 5.0 μM, whilst PP1 was inhibited < 10% at 250 μM toxin. Okadaic acid methyl ester was similarly inactive whereas dinophysistoxin-1 (35-methyl okadaic acid) inhibited PP1/2A almost as potently as okadaic acid. Pure acanthifolicin/okadaic acid methyl ester may be useful as specific inhibitors of PP2A at 1–10 μM concentrations in vitro and perhaps in vivo. The data also indicate that a region on these toxins important for PP1/2A inhibition comprises the single carboxyl group.  相似文献   

18.
We report here the synthesis, characterization and in vitro antiamoebic activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones (TSC), 1–5, and their bidentate complexes [Ru(η4-C8H12)(TSC)Cl2] 1a–5a. The biological studies of these compounds were investigated against HK-9 strain of Entamoeba histolytica and the concentration causing 50% cell growth inhibition (IC50) was calculated in the micromolar range. The ligands exhibited antiamoebic activity in the range (2.05–5.29 μM). Screening results indicated that the potencies of the compounds increased by the incorporation of ruthenium(II) in the thiosemicarbazones. The complexes 1a–5a showed antiamoebic activity with an IC50 of 0.61–1.43 μM and were better inhibitors of growth of E. histolytica, based on IC50 values. The most promising among them is Ru(II) complex 2a having 1,2,3,4-tetrahydroquinoline as N4 substitution.  相似文献   

19.
Several lichen compounds, i.e. lobaric acid (1), a β-orcinol depsidone from Stereocaulon alpinum L., (+)-protolichesterinic acid (2), an aliphatic -methylene-γ-lactone from Cetraria islandica Laur. (Parmeliaceae), (+)-usnic acid (3), a dibenzofuran from Cladonia arbuscula (Wallr.) Rabenh. (Cladoniaceae), parietin (4), an anthraquinone from Xanthoria elegans (Link) Th. Fr. (Calaplacaceae) and baeomycesic acid (5), a β-orcinol depside isolated from Thamnolia vermicularis (Sw.) Schaer. var. subuliformis (Ehrh.) Schaer. were tested for inhibitory activity on platelet-type 12(S)-lipoxygenase using a cell-based in vitro system in human platelets. Lobaric acid (1) and (+)-protolichesterinic acid (2) proved to be pronounced inhibitors of platelet-type 12(S)-lipoxygenase, whereas baeomycesic acid (5) showed only weak activity (inhibitory activity at a concentration of 100 μg/ml: 1 93.4±6.62%, 2 98,5±1.19%, 5 14.7±2.76%). Usnic acid (3) and parietin (4) were not active at this concentration. 1 and 2 showed a clear dose–response relationship in the range of 3.33–100 μg/ml. According to the calculated IC50 values the highest inhibitory activity was observed for the depsidone 1 (IC50=28.5 μM) followed by 2 (IC50=77.0 μM). The activity of 1 was comparable to that of the flavone baicalein, which is known as a selective 12(S)-lipoxygenase inhibitor (IC50=24.6 μM).  相似文献   

20.
Tropolones, the naturally occurring compounds responsible for the durability of heartwood of several cupressaceous trees, have been shown to possess both metal chelating and antioxidant properties. However, little is known about the ability of tropolone and its derivatives to protect cultured cells from oxidative stress-mediated damage. In this study, the effect of tropolones on hydrogen peroxide-induced DNA damage and apoptosis was investigated in cultured Jurkat cells. Tropolone, added to the cells 15 min before the addition of glucose oxidase, provided a dose dependent protection against hydrogen peroxide induced DNA damage. The IC50 value observed was about 15 μM for tropolone. Similar dose dependent protection was also observed with three other tropolone derivatives such as trimethylcolchicinic acid, purpurogallin and β-thujaplicin (the IC50 values were 34, 70 and 74 μM, respectively), but not with colchicine and tetramethyl purpurogallin ester. Hydrogen peroxide-induced apoptosis was also inhibited by tropolone. However, in the absence of exogenous H2O2 but in the presence of non-toxic concentrations of exogenous iron (100 μM Fe3+), tropolone dramatically increased the formation of single strand breaks at molar ratios of tropolone to iron lower than 3 to 1, while, when the ratio increased over 3, no toxicity was observed. In conclusion, the results presented in this study indicate that the protection offered by tropolone against hydrogen peroxide-induced DNA damage and apoptosis was due to formation of a redox-inactive iron complex, while its enhancement of iron-mediated DNA damage at ratios of [tropolone]/[Fe3+] lower than 3, was due to formation of a lipophilic iron complex which facilitates iron transport through cell membrane in a redox-active form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号