首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of a constitutively activated version of the heterotrimeric G protein alpha-subunit Galphas results in the swelling and vacuolization of a specific subset of ventral nerve cord motoneurons of Caenorhabditis elegans. A second site modifier (sgs-1) that completely suppresses this neuronal degeneration has been isolated. sgs-1 was cloned and was shown to encode an adenylyl cyclase which is most similar to mammalian adenylyl cyclase type IX. Mutations in sgs-1 change residues that are conserved among different adenylyl cyclases. These mutations are located in the two catalytic domains and in the first multiple transmembrane spanning region of the predicted protein. An sgs-1 reporter construct shows a general neuronal expression pattern, demonstrating that sgs-1 is expressed in the neurons that are susceptible to activated Galphas-induced cell death. A second C.elegans adenylyl cyclase gene (acy-2) was analyzed as well. In contrast to sgs-1, acy-2 shows a restricted expression pattern and loss of acy-2 function results in early larval lethality. These results suggest that SGS-1 is a target of Galphas signaling in motoneurons, whereas an interaction of Galphas with ACY-2, probably in the canal-associated neurons, is required for viability.  相似文献   

2.
The G(12) type of heterotrimeric G-proteins play an important role in development and behave as potent oncogenes in cultured cells. However, little is known about the molecular nature of the components that act in the G(12)-signaling pathway in an organism. We characterized a C. elegans Galpha subunit gene, gpa-12, which is a homolog of mammalian G(12)/G(13)alpha, and found that animals defective in gpa-12 are viable. Expression of activated GPA-12 (G(12)QL) results in a developmental growth arrest caused by a feeding behavior defect that is due to a dramatic reduction in pharyngeal pumping. To elucidate the molecular nature of the signaling pathways in which G(12) participates, we screened for suppressors of the G(12)QL phenotype. We isolated 50 suppressors that contain mutations in tpa-1, which encodes two protein kinase C isoforms, TPA-1A and TPA-1B, most similar to PKCtheta/delta. TPA-1 mediates the action of the tumor promoter PMA. Expression of G(12)QL and treatment of wild-type animals with PMA induce an identical growth arrest caused by inhibition of larval feeding, which is dependent on TPA-1A and TPA-1B function. These results suggest that TPA-1 is a downstream target of both G(12) signaling and PMA in modulating feeding and growth in C. elegans. Taken together, our findings provide a potential molecular mechanism for the transforming capability of G(12) proteins.  相似文献   

3.
4.
Bastiani CA  Gharib S  Simon MI  Sternberg PW 《Genetics》2003,165(4):1805-1822
egl-30 encodes the single C. elegans ortholog of vertebrate Galphaq family members. We analyzed the expression pattern of EGL-30 and found that it is broadly expressed, with highest expression in the nervous system and in pharyngeal muscle. We isolated dominant, gain-of-function alleles of egl-30 as intragenic revertants of an egl-30 reduction-of-function mutation. Using these gain-of-function mutants and existing reduction-of-function mutants, we examined the site and mode of action of EGL-30. On the basis of pharmacological analysis, it has been determined that egl-30 functions both in the nervous system and in the vulval muscles for egg-laying behavior. Genetic epistasis over mutations that eliminate detectable levels of serotonin reveals that egl-30 requires serotonin to regulate egg laying. Furthermore, pharmacological response assays strongly suggest that EGL-30 may directly couple to a serotonin receptor to mediate egg laying. We also examined genetic interactions with mutations in the gene that encodes the single C. elegans homolog of PLCbeta and mutations in genes that encode signaling molecules downstream of PLCbeta. We conclude that PLCbeta functions in parallel with egl-30 with respect to egg laying or is not the major effector of EGL-30. In contrast, PLCbeta-mediated signaling is likely downstream of EGL-30 with respect to pharyngeal-pumping behavior. Our data indicate that there are multiple signaling pathways downstream of EGL-30 and that different pathways could predominate with respect to the regulation of different behaviors.  相似文献   

5.
The topology of mammalian adenylyl cyclase reveals an integral membrane protein composed of an alternating series of membrane and cytoplasmic domains (C1 and C2). The stimulatory G protein, Galpha(s), binds within a cleft in the C2 domain of adenylyl cyclase while Galpha(i) binds within the opposite cleft in the C1 domain. The mechanism of these two regulators also appears to be in opposition. Activation of adenylyl cyclase by Galpha(s) or forskolin results in a 100-fold increase in the apparent affinity of the two domains for one another. We show herein that Galpha(i) reduces C1/C2 domain interaction and thus formation of the adenylyl cyclase catalytic site. Mutants that increase the affinity of C1 for C2 decrease the ability of Galpha(i) to inhibit the enzyme. In addition, Galpha(i) can influence binding of molecules to the catalytic site, which resides at the C1/C2 interface. Adenylyl cyclase can bind substrate analogs in the presence of Galpha(i) but cannot simultaneously bind Galpha(i) and transition state analogs such as 2'd3'-AMP. Galpha(i) also cannot inhibit the membrane-bound enzyme in the presence of manganese, which increases the affinity of adenylyl cyclase for ATP and substrate analogs. Thus homologous G protein alpha-subunits promote bidirectional regulation at the domain interface of the pseudosymmetrical adenylyl cyclase enzyme.  相似文献   

6.
L Avery  H R Horvitz 《Neuron》1989,3(4):473-485
Using a laser microbeam to kill specific subsets of the pharyngeal nervous system of C. elegans, we found that feeding was accomplished by two separately controlled muscle motions, isthmus peristalsis and pumping. The single neuron M4 was necessary and sufficient for isthmus peristalsis. The MC neurons were necessary for normal stimulation of pumping in response to food, but pumping continued and was functional in MC- worms. The remaining 12 neuron types were also unnecessary for functional pumping. No operation we did, including destruction of the entire pharyngeal nervous system, abolished pumping altogether. When we killed all pharyngeal neurons except M4, the worms were viable and fertile, although retarded and starved. Since feeding is one of the few known essential actions controlled by the nervous system, we suggest that most of the C. elegans nervous system is dispensable in hermaphrodites under laboratory conditions. This may explain the ease with which nervous system mutants are isolated and handled in C. elegans.  相似文献   

7.
Weitmann S  Schultz G  Kleuss C 《Biochemistry》2001,40(36):10853-10858
Mammalian particulate adenylyl cyclases contain two transmembrane regions (M(1) and M(2)) and two cytosolic domains (C(1) and C(2)) forming the catalytic core. The cytosolic domains are subdivided into a highly conserved region (part a) and a region with lower similarity (part b). Hypothetical models exist that account for the mechanism by which Galpha(s) and forskolin stimulate mammalian adenylyl cyclase. In contrast, little is known about how Gbetagamma dimers regulate catalysis. The so-called QEHA region located in the C(2a) domain of type II adenylyl cyclase has been proposed to represent a site of interaction. Here we show (i) that the QEHA region directly interacts with Gbetagamma but (ii) that it is of minor importance for the stimulation of type II adenylyl cyclase because it can be replaced by corresponding, nonidentical regions of other adenylyl cyclase isoforms without altering the stimulatory effect of Gbetagamma and (iii) that the C(1b) region is necessary for Gbetagamma to exert a stimulatory effect on adenylyl cyclase type II as in a C(1b) deletion mutant the Gbetagamma regulation was specifically impeded whereas the Galpha(s)- and forskolin-mediated stimulation was maintained.  相似文献   

8.
The feeding activity of the nematode Caenorhabditis elegans is regulated by an anatomically well-defined network of 20 enteric neurones that employs small molecule and neuropeptidergic signalling. Two of the most potent excitatory agents are 5-HT and the neuropeptide FLP17A. Here we have examined the role of cAMP in modulating their excitatory actions by pharmacological manipulation of the level of cAMP. Application of the membrane permeable cAMP analogue, dibutyryl-cAMP (1 microM), enhanced the excitatory response to both FLP17A and 5-HT. Furthermore, the adenylyl cyclase activator, forskolin (50 nM), significantly enhanced the excitatory response to both FLP17A and 5-HT. The phosphodiesterase inhibitor, ibudilast (10 microM), enhanced the excitatory response to FLP17A. The protein kinase inhibitor, H-9 dihydrochloride (10 microM) significantly reduced the excitatory response to 5-HT. H-9 dihydrochloride also had a direct effect on pharyngeal activity. The effect of FLP17A and 5-HT on two mutants, egl-8 (loss-of-function phospholipase-Cbeta) and egl-30 (loss-of-function Galphaq) was also investigated. Both these mutants have a lower pharyngeal pumping rate than wild-type which has to be considered when interpreting the effects of these mutations on the excitatory responses to FLP17A and 5HT. However, even taking into consideration the lower basal activity of these mutants, it is clear that the percentage increase in pharyngeal pumping rate induced by FLP17A is greatly reduced in both mutants compared to wild-type. In the case of 5-HT, the effect of the mutant backgrounds on the response was less pronounced. Overall, the data support a role for cAMP in modulating the excitatory action of both FLP17A and 5-HT on C. elegans pharyngeal pumping and furthermore implicate an EGL-30 dependent pathway in the regulation of the response to FLP17A.  相似文献   

9.
Mammalian membrane-bound adenylyl cyclase consists of two highly conserved cytoplasmic domains (C1a and C2a) separated by a less conserved connecting region, C1b, and one of two transmembrane domains, M2. The C1a and C2a domains form a catalytic core that can be stimulated by forskolin and the stimulatory G protein subunit alpha (Galpha(s)). In this study, we analyzed the regulation of type 7 adenylyl cyclase (AC7) by C1b. The C1a, C1b, and C2a domains of AC7 were purified separately. Escherichia coli SlyD protein, a cis-trans peptidylprolyl isomerase (PPIase), copurifies with AC7 C1b (7C1b). SlyD protein can inhibit the Galpha(s)- and/or forskolin-activated activity of both soluble and membrane-bound AC7. Mutant forms of SlyD with reduced PPIase activity are less potent in the inhibition of AC7 activity. Interestingly, different isoforms of mammalian membrane-bound adenylyl cyclase can be either inhibited or stimulated by SlyD protein, raising the possibility that mammalian PPIase may regulate enzymatic activity of mammalian adenylyl cyclase. Purified 7C1b-SlyD complex has a greater inhibitory effect on AC7 activity than SlyD alone. This inhibition by 7C1b is abolished in a 7C1b mutant in which a conserved glutamic acid (amino acid residue 582) is changed to alanine. Inhibition of adenylyl cyclase activity by 7C1b is further confirmed by using 7C1b purified from an E. coli slyD-deficient strain. This inhibitory activity of AC7 is also observed with the 28-mer peptides derived from a region of C1b conserved in AC7 and AC2 but is not observed with a peptide derived from the corresponding region of AC6. This inhibitory activity exhibited by the C1b domain may result from the interaction of 7C1b with 7C1a and 7C2a and may serve to hold AC7 in the basal nonstimulated state.  相似文献   

10.
D. M. Raizen  RYN. Lee    L. Avery 《Genetics》1995,141(4):1365-1382
We studied the control of pharyngeal excitation in Caenorhabditis elegans. By laser ablating subsets of the pharyngeal nervous system, we found that the MC neuron type is necessary and probably sufficient for rapid pharyngeal pumping. Electropharyngeograms showed that MC transmits excitatory postsynaptic potentials, suggesting that MC acts as a neurogenic pacemaker for pharyngeal pumping. Mutations in genes required for acetylcholine (ACh) release and an antagonist of the nicotinic ACh receptor (nAChR) reduced pumping rates, suggesting that a nAChR is required for MC transmission. To identify genes required for MC neurotransmission, we screened for mutations that cause slow pumping but no other defects. Mutations in two genes, eat-2 and eat-18, eliminated MC neurotransmission. A gain-of-function eat-18 mutation, ad820sd, and a putative loss-of-function eat-18 mutation, ad1110, both reduced the excitation of pharyngeal muscle in response to the nAChR agonists nicotine and carbachol, suggesting that eat-18 is required for the function of a pharyngeal nAChR. Fourteen recessive mutations in eat-2 fell into five complementation classes. We found allele-specific genetic interactions between eat-2 and eat-18 that correlated with complementation classes of eat-2. We propose that eat-18 and eat-2 function in a multisubunit protein complex involved in the function of a pharyngeal nAChR.  相似文献   

11.
Paramecium has a 280-kDa guanylyl cyclase. The N terminus resembles a P-type ATPase, and the C terminus is a guanylyl cyclase with the membrane topology of canonical mammalian adenylyl cyclases, yet with the cytosolic loops, C1 and C2, inverted compared with the mammalian order. We expressed in Escherichia coli the cytoplasmic domains of the protozoan guanylyl cyclase, independently and linked by a peptide, as soluble proteins. The His(6)-tagged proteins were enriched by affinity chromatography and analyzed by immunoblotting. Guanylyl cyclase activity was reconstituted upon mixing of the recombinant C1a- and C2-positioned domains and in a linked C1a-C2 construct. Adenylyl cyclase activity was minimal. The nucleotide substrate specificity was switched from GTP to ATP upon mutation of the substrate defining amino acids Glu(1681) and Ser(1748) in the C1-positioned domain to the adenylyl cyclase specific amino acids Lys and Asp. Using the C2 domains of mammalian adenylyl cyclases type II or IX and the C2-positioned domain from the Paramecium guanylyl cyclase we reconstituted a soluble, all C2 adenylyl cyclase. All enzymes containing protozoan domains were not affected by Galpha(s)/GTP or forskolin, and P site inhibitors were only slightly effective.  相似文献   

12.
To identify hypothesized missing components of the synaptic G alpha(o)-G alpha(q) signaling network, which tightly regulates neurotransmitter release, we undertook two large forward genetic screens in the model organism C. elegans and focused first on mutations that strongly rescue the paralysis of ric-8(md303) reduction-of-function mutants, previously shown to be defective in G alpha(q) pathway activation. Through high-resolution mapping followed by sequence analysis, we show that these mutations affect four genes. Two activate the G alpha(q) pathway through gain-of-function mutations in G alpha(q); however, all of the remaining mutations activate components of the G alpha(s) pathway, including G alpha(s), adenylyl cyclase, and protein kinase A. Pharmacological assays suggest that the G alpha(s) pathway-activating mutations increase steady-state neurotransmitter release, and the strongly impaired neurotransmitter release of ric-8(md303) mutants is rescued to greater than wild-type levels by the strongest G alpha(s) pathway activating mutations. Using transgene induction studies, we show that activating the G alpha(s) pathway in adult animals rapidly induces hyperactive locomotion and rapidly rescues the paralysis of the ric-8 mutant. Using cell-specific promoters we show that neuronal, but not muscle, G alpha(s) pathway activation is sufficient to rescue ric-8(md303)'s paralysis. Our results appear to link RIC-8 (synembryn) and a third major G alpha pathway, the G alpha(s) pathway, with the previously discovered G alpha(o) and G alpha(q) pathways of the synaptic signaling network.  相似文献   

13.
Caenorhabditis elegans has previously been proposed as an alternative host for models of infectious disease caused by human pathogens. When exposed to some human pathogenic bacteria, the life span of nematodes is significantly reduced. We have shown that mutations in the age-1, and/or age-2 genes of C. elegans, that normally enhance life expectancy, can also increase resistance to killing by the bacterial pathogens Pseudomonas aeruginosa, Salmonella enterica var. Typhimurium, Burkholderia cepacia or Yersinia pseudotuberculosis. We also found that the rate at which wild-type C. elegans was killed by the bacterial pathogens tested increased as nematodes aged. In the case of P. aeruginosa infection, the difference in life span of wild type and age-1 mutants of C. elegans was not due to differences in the level of bacterial colonisation of the gut.  相似文献   

14.
15.
We have identified the gene C28H8.6 (pxl-1) as the Caenorhabditis elegans orthologue of vertebrate paxillin. PXL-1 contains the four C-terminal LIM domains conserved in paxillin across all species and three of the five LD motifs found in the N-terminal half of most paxillins. In body wall muscle, PXL-1 antibodies and a full-length green fluorescent protein translational fusion localize to adhesion sites in the sarcomere, the functional repeat unit in muscle responsible for contraction. PXL-1 also localizes to ring-shaped structures near the sarcolemma in pharyngeal muscle corresponding to podosome-like sites of actin attachment. Our analysis of a loss-of-function allele of pxl-1, ok1483, shows that loss of paxillin leads to early larval arrested animals with paralyzed pharyngeal muscles and eventual lethality, presumably due to an inability to feed. We rescued the mutant phenotype by expressing paxillin solely in the pharynx and found that these animals survived and are essentially wild type in movement and body wall muscle structure. This indicates a differential requirement for paxillin in these two types of muscle. In pharyngeal muscle it is essential for contraction, whereas in body wall muscle it is dispensable for filament assembly, sarcomere stability, and ultimately movement.  相似文献   

16.
Ugur O  Onaran HO  Jones TL 《Biochemistry》2003,42(9):2607-2615
Most heterotrimeric G-protein alpha subunits are posttranslationally modified by palmitoylation, a reversible process that is dynamically regulated. We analyzed the effects of Galpha(s) palmitoylation for its intracellular distribution and ability to couple to the beta-adrenergic receptor (betaAR) and stimulate adenylyl cyclase. Subcellular fractionation and immunofluorescence microscopy of stably transfected cyc(-) cells, which lack endogenous Galpha(s), showed that wild-type Galpha(s) was predominantly localized at the plasma membrane, but the mutant C3A-Galpha(s), which does not incorporate [(3)H]palmitate, was mostly associated with intracellular membranes. In agreement with this mislocalization, C3A-Galpha(s) showed neither isoproterenol- or GTPgammaS-stimulated adenylyl cyclase activation nor GTPgammaS-sensitive high-affinity agonist binding, all of which were present in the wild-type Galpha(s) expressing cells. Fusion of C3A-Galpha(s) with the betaAR [betaAR-(C3A)Galpha(s)] partially rescued its ability to induce high-affinity agonist binding and to stimulate adenylyl cyclase activity after isoproterenol or GTPgammaS treatment. In comparison to results with the WT-Galpha(s) and betaAR (betaAR-Galpha(s)) fusion protein, the betaAR-(C3A)Galpha(s) fusion protein was about half as efficient at coupling to the receptor and effector. Chemical depalmitoylation by hydroxylamine of membranes expressing betaAR-Galpha(s) reduced the high-affinity agonist binding and adenylyl cyclase activation to a similar degree as that observed in betaAR-(C3A)Galpha(s) expressing membranes. Altogether, these findings indicate that palmitoylation ensured proper localization of Galpha(s) and facilitated bimolecular interactions of Galpha(s) with the betaAR and adenylyl cyclase.  相似文献   

17.
Emerin and LEM2 are ubiquitous inner nuclear membrane proteins conserved from humans to Caenorhabditis elegans. Loss of human emerin causes Emery-Dreifuss muscular dystrophy (EDMD). To test the roles of emerin and LEM2 in somatic cells, we used null alleles of both genes to generate C. elegans animals that were either hypomorphic (LEM-2-null and heterozygous for Ce-emerin) or null for both proteins. Single-null and hypomorphic animals were viable and fertile. Double-null animals used the maternal pool of Ce-emerin to develop to the larval L2 stage, then arrested. Nondividing somatic cell nuclei appeared normal, whereas dividing cells had abnormal nuclear envelope and chromatin organization and severe defects in postembryonic cell divisions, including the mesodermal lineage. Life span was unaffected by loss of Ce-emerin alone but was significantly reduced in LEM-2-null animals, and double-null animals had an even shorter life span. In addition to striated muscle defects, double-null animals and LEM-2-null animals showed unexpected defects in smooth muscle activity. These findings implicate human LEM2 mutations as a potential cause of EDMD and further suggest human LEM2 mutations might cause distinct disorders of greater severity, since C. elegans lacking only LEM-2 had significantly reduced life span and smooth muscle activity.  相似文献   

18.
Tyramine appears to regulate key processes in nematodes, such as pharyngeal pumping, and more complex behaviors, such as foraging. Recently, a Caenorhabditis elegans tyramine receptor, SER-2, was identified that is involved in the TA-dependent regulation of these processes. In the present study, we have identified a second C. elegans gene, tyra-2 (F01E11.5) that encodes a tyramine receptor. This is the first identification of multiple tyramine receptor genes in any invertebrate. Membranes from COS-7 cells expressing TYRA-2 bind [(3)H]tyramine with high affinity with a K(d) of 20 +/- 5 nM. Other physiologically relevant biogenic amines, such as octopamine and dopamine, inhibit [(3)H]tyramine binding with much lower affinity (K(i)s of 1.55 +/- 0.5 and 1.78 +/- 0.6 microM, respectively), supporting the identification of TYRA-2 as a tyramine receptor. Indeed, tyramine also dramatically increases GTPgammaS binding to membranes from cells expressing TYRA-2 (EC(50) of 50 +/- 13 nM) and the TA-dependent GTPgammaS binding is PTX-sensitive suggesting that TYRA-2 may couple to Galpha(i/o). Based on fluorescence from tyra::gfp fusion constructs, TYRA-2 expression appears to be exclusively neuronal in the MC and NSM pharyngeal neurons, the AS family of amphid neurons and neurons in the nerve ring, body and tail. Taken together, these results suggest that TYRA-2 encodes a second Galpha(i/o)-coupled tyramine receptor and suggests that TA-dependent neuromodulation may be mediated by multiple receptors and more complex than previously appreciated.  相似文献   

19.
McMullan R  Nurrish SJ 《PloS one》2011,6(2):e17265
The Rho family of small GTPases are essential during early embryonic development making it difficult to study their functions in adult animals. Using inducible transgenes expressing either a constitutively active version of the single C. elegans Rho ortholog, RHO-1, or an inhibitor of endogenous Rho (C3 transferase), we demonstrate multiple defects caused by altering Rho signaling in adult C. elegans. Changes in RHO-1 signaling in cholinergic neurons affected locomotion, pharyngeal pumping and fecundity. Changes in RHO-1 signaling outside the cholinergic neurons resulted in defective defecation, ovulation, and changes in C. elegans body morphology. Finally both increased and decreased RHO-1 signaling in adults resulted in death within hours. The multiple post-developmental roles for Rho in C. elegans demonstrate that RhoA signaling pathways continue to be used post-developmentally and the resulting phenotypes provide an opportunity to further study post-developmental Rho signaling pathways using genetic screens.  相似文献   

20.
A genetic screen in Saccharomyces cerevisiae identified mutations in mammalian adenylyl cyclase that activate the enzyme in the absence of G(s)alpha. Thirteen of these mutant proteins were characterized biochemically in an assay system that depends on a mixture of the two cytosolic domains (C(1) and C(2)) of mammalian adenylyl cyclases. Three mutations, I1010M, K1014N, and P1015Q located in the beta4-beta5 loop of the C(2) domain of type II adenylyl cyclase, increase enzymatic activity in the absence of activators. The K1014N mutation displays both increased maximal activity and apparent affinity for the C(1) domain of type V adenylyl cyclase in the absence of activators of the enzyme. The increased affinity of the mutant C(2) domain of adenylyl cyclase for the wild type C(1) domain was exploited to isolate a complex containing VC(1), IIC(2), and G(s)alpha-guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) in the absence of forskolin and a complex of VC(1), IIC(2), forskolin, and P-site inhibitor in the absence of G(s)alpha-GTPgammaS. The isolation of these complexes should facilitate solution of crystal structures of low activity states of adenylyl cyclase and thus determination of the mechanism of activation of the enzyme by forskolin and G(s)alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号