首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the relative magnitudes of inbreeding and outbreeding depression in rare plant populations is increasingly important for effective management strategies. There may be positive and negative effects of crossing individuals in fragmented populations. Conservation strategies may include introducing new genetic material into rare plant populations, which may be beneficial or detrimental based on whether hybrid offspring are of increased or decreased quality. Thus, it is important to determine the effects of pollen source on offspring fitness in rare plants. We established pollen crosses (i.e. geitonogamous‐self, autonomous‐self, intrasite‐outcross, intersite‐outcross and open‐pollinated controls) to determine the effects of pollen source on fitness (seeds/fruit and seed mass) and early offspring traits (probability of germination, number of leaves, leaf area and seedling height) in the rare plant Polemonium vanbruntiae. Open‐pollinated, intrasite‐outcross and geitonogamous‐self treatments did not differ in fitness. However, plants receiving autonomous‐self pollen had the lowest fitness and the lowest probability of seed germination. Intersite‐outcross plants contained fewer seeds/fruit, but seeds germinated at higher frequencies and seedlings were more vigorous. We also detected heterosis at the seed germination stage. These data may imply that natural populations of P. vanbruntiae exhibit low genetic variation and little gene flow. Evidence suggests that deleterious alleles were not responsible for reduced germination; rather environmental factors, dichogamy, herkogamy and/or lack of competition among pollen grains may have caused low germinability in selfed offspring. Although self‐pollination may provide some reproductive assurance in P. vanbruntiae, the result is a reduction in germination and size‐related early traits for selfed offspring.  相似文献   

2.
Like many angiosperms, Crinum erubescens is partially self-compatible, producing fewer seeds upon selfing than after outcrossing. In this paper we test the relative magnitude of the prefertilization and postfertilization effects of self-incompatibility, inbreeding depression, or both in a natural population of this hermaphroditic tropical herb. We characterize prefertilization effects by examining pollen tube growth, while postfertilization effects are characterized by examination of embryo abortion and seed maturation. Statistical methods are developed to test the magnitude of these effects from one life-cycle stage to the next. We find that although pollen performance in selfed flowers is lower than that in outcrossed flowers, pollen performance is low overall. Postfertilization effects attributable to inbreeding depression account for a larger proportion of the reduction in fecundity in selfed compared to outcrossed flowers. Among naturally pollinated plants, despite ample pollen deposition, the numbers of fruits and seeds set are intermediate to selfed and outcrossed treatments.  相似文献   

3.
Most studies of the effects of inbreeding focus on vegetative vigor and reproductive output through the female (fruit and seed) function. This study not only examines the effects of inbreeding on the female function but it also examines the effects of inbreeding on pollen performance both in vitro and in vivo. This study used Cucurbita texana, a wild gourd, and was performed under field conditions. In vivo performance was assessed by placing equal amounts of pollen from either the inbred or outcrossed plants onto a stigma together with pollen from a tester line. As with other studies, we found that outcrossed plants had greater reproductive output (male flowers and fruits) than plants produced from self pollinations. Unlike most studies of inbreeding depression, which mostly ignore the male function of plants, we also found that the pollen produced by outcrossed plants had faster pollen tube growth in vitro than the pollen produced on selfed plants. Moreover, pollen from selfed plants sired significantly fewer seeds than pollen from outcrossed plants under conditions of pollen competition (i.e. the number of pollen grains deposited onto the stigmas was larger than the number of available ovules). These findings indicate that inbreeding affects the performance of the resulting sporophytic generation and the microgametophytes they produce.  相似文献   

4.
Summary Pink-flowered tubular Penstemon roseus (Plantaginaceae), which has shifted partially to hummingbird pollination, blooms on high-elevation slopes in the mountains in Tlaxcala, Mexico. We studied the interactions between pollinator visitation rates to flowers, pollen removal and deposition, flower size, and nectar removal frequency on seed production in P. roseus. We combine observational and experimental studies in two contrasting natural populations. Our manual pollinations revealed that P. roseus is fully self-compatible. Autonomous self- and manual self-pollinated flowers matured as many seeds as when outcrossed, but outcrossing seems to become better than selfing as the flowering season progressed. Early in the season flowers that were bagged and hand-selfed, hand-outcrossed, or autonomously selfed, or unbagged and naturally pollinated had equal seed set in all four treatments. But later in the season, outcross pollen gave approximately twice as much seed set as the two self-treatments. Low levels of pollen receipt and pollen removal were consistent with the long time elapsed for a given plant to be visited by hummingbirds, which suggests pollen shortage in both sites. Despite differences in pollinator visitation rates to flowers, probability of flower visitation, removal and deposition of pollen, and nectar production rates between populations, we found that total nectar production had no effect on seed production at either site. The daily nectar secretion rate of 0.3–0.65 mg sugar per flower per 1–3 days was low relative to other hummingbird-adapted Penstemon species (typical range: 1.5–5 mg sugar per flower), and it might be intermediate between hummingbird- and bee-adapted Penstemon flowers. Our results support the hypothesis about a shift toward hummingbird pollination, and provide an example of a ‘despecialized’ Penstemon species, which attracts high-energy pollinators (hummingbirds) and profits from outcrossing, but retains bee-syndrome floral traits and low sugar production rates.  相似文献   

5.
By using a generally applicable technique that involves monitoring the development and survivorship of flowers and seed capsules, I estimated the material and energetic costs of producing self- and cross-fertilized seeds in Impatiens capensis. All flowers and fruits on six plants were censused intensively for the two-month period of reproduction. Cleistogamous (selfing) flowers ripened seed in about 24 days, compared to about 36 days for the chasmogamous (outcrossing) flowers. In terms of dry weight, selfed seeds cost about two-thirds as much as outcrossed seeds: 12.4 versus 18.4 mg dry weight per seed. When adjusted to the currency of calories, and including an independent estimate of pollen and nectar production in outcrossing flowers, I estimate the costs to be about 65 and 135 calories per selfed or outcrossed seed. Sources of error include the accuracy of the estimates of flower and fruit weight, and possible differences among the developmental stages in respiratory costs. The cost discrepancy implies that outcrossed seeds should possess a countervailing fitness advantage large enough to offset their greater energetic cost.  相似文献   

6.
In gynodioecious plant species, females are expected to have more resources available for maturing seeds because pistillate flowers are smaller, do not produce pollen, and are thus less costly that perfect flowers. The potential female advantage arising from more abundant resources is, however, likely to vary depending on whether seed production is limited by resource or pollen availability. Here we experimentally investigated the influence of pollen and resource limitation on female advantage in a gynodioecious species using two levels of pollination. Total seed production of females was always greater than that of hermaphrodites: females produced more flowers and more fruits that contained similar numbers of seeds of similar mass. Under low pollination, female and hermaphrodite plants allocated resources to increased flower production rather than to increased seed size or quality. We did not detect any influence of pollen or resource limitation on female advantage, which remained similar under low (= abundant resources) and full pollination. Outcrossed fruits performed better than selfed fruits when the same plant received both selfed and outcrossed pollen on different flowers. These differences were not greater under high pollination, possibly because resources available for each fruit did not differ between our pollen intensity treatments.  相似文献   

7.
When fertilization triggers flower senescence, early autonomous selfing may cause flowers to senesce before pollen has dispersed, discounting unused pollen. Selfing-induced flower senescence was examined in Leptosiphon jepsonii, a species that varies in the timing of self-compatibility. In field and greenhouse experiments, fertilization had a large effect on flower senescence; most outcrossed flowers senesced after 1 d whereas emasculated flowers lasted 2-5 d. In a comparison of inbred lines from three populations, longevity of autonomously selfed flowers of early self-compatible individuals was significantly less than that of late self-compatible individuals. In field experiments, autonomously selfed flowers were shorter-lived in a predominantly early-selfing population than in a predominantly late-selfing population. Pollen was available and viable beyond the first day of anthesis, suggesting that reductions in flower longevity caused by autonomous selfing could incur a cost to male outcross fitness. We argue that this effect is likely to be most pronounced under intermediate rates of pollinator visitation. Observed pollinator visitation rates ranged from 0.035-0.775 visits per flower per day, indicating a potential for selfing-induced flower senescence to incur pollen discounting in Leptosiphon jepsonii.  相似文献   

8.
M. Ramsey 《Oecologia》1995,103(1):101-108
The extent, frequency and causes of pollenlimited seed production were examined in partially selffertile populations of Blandfordia grandiflora for 2 years. Percentage seed set of open-pollinated plants (50–57%) did not differ within or between years, and was about 19% less than experimentally cross-pollinated plants (70–75%). Floral visits by honeybees did not differ through the flowering season and the number of pollen grains deposited on stigmas within 12 h of flowers opening exceeded the number of ovules per flower, indicating that the quality rather than the quantity of pollination limited seed set. Pollen limitation was caused by concurrent self- and cross-pollination and the subsequent abortion of some selfed ovules due to inbreeding depression. Natural seed set (55%) was intermediate between selfed (43%) and crossed (75%) flowers and was not increased when flowers that had been available to pollinators for 24 h were hand cross-pollinated, suggesting that ovules were already fertilized. Similarly, experimental pollination with both cross and self pollen within 24 h of flowers opening did not increase seed set relative to natural seed set, indicating that both cross- and self-fertilizations had occurred. In contrast, when selfing followed crossing by 48 h, or vice versa, seed set did not differ from crossed-only or selfed-only flowers, respectively, indicating that ovules were pre-empted by the first pollination. Collectively, these results indicate that under natural conditions self pollen pre-empts ovules, rendering them unavailable for cross-fertilization. This selfing reduces fecundity by 50%, as estimated from the natural production of cross seeds when selfing was prevented. Consequently, selection should favour floral traits, such as increased stigma-anther separation or protandry, that reduce interference between male and female functions that leads to selfing.  相似文献   

9.
Pollen limitation occurs when plants produce less fruits and/or seeds than they would with adequate pollen receipt. If the addition of cross-pollen to stigmas increases fruit/seed production, it is interpreted as an evidence of pollen limitation. Much of the limitation may be associated with the quality rather than quantity of pollen; however, most studies do not discriminate between the two, which may lead to misinterpretation of the results. We studied the effects of quality and quantity of pollen on the reproduction of a northern Spanish population of Crataegus monogyna. The treatments included self- and cross-pollination, and supplementation to open and bagged flowers. The response variables considered were number of pollen grains per stigma, pollen tubes per style, and initial and final fruit set. In the Cantabrian range, C. monogyna requires insect pollinators to set fruit and is partially self-incompatible. We found that the number of pollen tubes did not differ between cross- and self-pollination treatments; however, self-pollinated flowers set less fruits than flowers that received pure cross-pollen or were supplemented with both cross- and self-pollen. The experimental design allowed us to infer qualitative rather than quantitative pollen limitation. Comparison of the number of pollen grains and tubes, and initial and final fruit set among pollination treatments suggested post-zygotic embryo selection against selfed progeny.  相似文献   

10.
Reciprocal specialization in interspecific interactions, such as plant-pollinator mutualisms, increases the probability that either party can have detrimental effects on the other without the interaction being dissolved. This should be particularly apparent in obligate mutualisms, such as those that exist between yucca and yucca moths. Female moths collect pollen from yucca flowers, oviposit into floral ovaries, and then pollinate those flowers. Yucca moths, which are the sole pollinators of yuccas, impose a cost in the form of seed consumption by the moth larvae. Here we ask whether there also is a genetic cost through selfish moth behavior that may lead to high levels of self fertilization in the yuccas. Historically, it has been assumed that females leave a plant immediately after collecting pollen, but few data are available. Observations of a member of the Tegeticula yuccasella complex on Yucca filamentosa revealed that females remained on the plant and oviposited in 66% of all instances after observed pollen collections, and 51% of all moths were observed to pollinate the same plant as well. Manual cross and self pollinations showed equal development and retention of fruits. Subsequent trials to assess inbreeding depression by measuring seed weight, germination date, growth rate, and plant mass at 5 months revealed significant negative effects on seed weight and germination frequency in selfed progeny arrays. Cumulative inbreeding depression was 0.475, i.e., fitness of selfed seeds was expected to be less than half that of outcrossed seeds. Single and multilocus estimates of outcrossing rates based on allozyme analyses of open-pollinated progeny arrays did not differ from 1.0. The discrepancy between high levels of behavioral self-pollination by the moths and nearly complete outcrossing in mature seeds can be explained through selective foreign pollen use by the females, or, more likely, pollen competition or selective abortion of self-pollinated flowers during early stages of fruit development. Thus, whenever the proportion of pollinated flowers exceeds the proportion that can be matured to ripe fruit based on resource availability, the potential detrimental genetic effects imposed through geitonogamous pollinations can be avoided in the plants. Because self-pollinated flowers have a lower probability of retention, selection should act on female moths to move among plants whenever moth density is high enough to trigger abortion. Received: 18 March 1996 \Accepted: 30 July 1996  相似文献   

11.
A large variety of reproductive patterns is present among alpine plants to ensure the persistence of populations in such harsh environments. In the present study, the role of spontaneous selfing and its contribution to the actual reproductive success of an alpine pioneer plant was investigated. The results showed that Saxifraga aizoides is clearly self-compatible. Open-pollinated flowers exhibited higher seed numbers per capsules than selfing flowers, albeit the difference was not significant. Although seed weight seemed to be independent from the kind of pollination, open-pollinated flowers had a significantly higher proportion of germinated seeds than selfed ones. Furthermore, the ability of fast germination found in S. aizoides enables the seeds to take advantage of all possible opportunities for germination. In summary, S. aizoides exhibits a successful recruitment strategy for an alpine pioneer species.  相似文献   

12.
In rare plants that often occur in small or isolated populations the probability of selfing between close relatives is increased as a consequence of demographic stochasticity. The mode of pollination (selfing, outcrossing) may have considerable effects on seed traits and offspring performance and hence potential viability. Since current efforts aiming at the restoration of floodplain grasslands through the transfer of plant material from species-rich source stands may lead to the establishment of initially small populations consisting of founders from different populations, the present paper experimentally investigated the effects of pollen source and floral types (i.e. chasmogamous (CH) and cleistogamous (CL) flowers) on seed traits and offspring performance in three highly endangered violet species (Viola elatior, V. pumila, V. stagnina) of these grasslands. We estimated inbreeding depression and tested the performance of selfed and outcrossed offspring in two microbial environments, i.e. in soil inoculated with (i) non-sterile substrate from the same species (‘home’-conditions) and (ii) sterilised substrate.Plants produced more CL capsules than CH flowers. Pollinator exclusion had only small effects on CH seed production. CL seeds had a significantly lower mass per seed than CH seeds. This may be related to constraints in allocation or environmental conditions. Seedling growth was reduced in plants grown under ‘home’-conditions as compared to control soils. Under ‘home’-conditions, relative fitness of selfed seedlings of V. stagnina was significantly higher than that of crossed progeny. Our results suggest that high genetic differentiation among populations as a consequence of isolation may result in outbreeding depression, e.g., through biochemical or physiological incompatibilities between genes or the breaking of coadapted gene complexes. In V. stagnina, offspring fitness differed considerably between environments, but in general we found no indications for inbreeding depression in these rare species.  相似文献   

13.
In many plants, the frequency of geitonogamous (within-plant) pollination is likely to increase as a function of the number of simultaneously blooming flowers. This increase in self-pollination often produces inbreeding depression. Thus, a dilemma may exist in that individuals cannot increase seed production without lowering the average fitness of each seed. Conditions necessary for the existence of the dilemma were confirmed in large individuals of the herbaceous perennial Geranium caespitosum. Manually geitonogamously pollinated flowers initiated as many fruits as manually outcrossed flowers, but showed a subsequently greater number of embryo abortions, matured fewer seeds, and had a lower average seed weight. Observations of pollinators and dye transfer showed that geitonogamous bee pollinations increased as the number of flowers per plant increased. A simple model predicted that detrimental effects from geitonogamy become likely when 55 flowers are simultaneously blooming. Plants with 55 or more flowers produced 30% of the flowers in populations. The effect, and possible circumvention, of the dilemma on Geranium, and angiosperm breeding systems in general, is discussed.  相似文献   

14.
The consequences of inbreeding for reproductive traits were investigated for two closely related annual lupines that differ in their mating system. Lupinus bicolor (Leguminosae) is a primarily selling species while Lupinus nanus outcrosses at intermediate rates. A controlled crossing program was used for each species to produce selfed and outcrossed progeny. These progeny were then grown in a greenhouse and scored for the date of first flower, flower morphology, and autofertility. Selfed progeny of L. bicolor produced significantly smaller flowers but did not differ from outcrossed progeny for the remaining traits. Selfed progeny of L. nanus produced flowers that significantly differed in shape and had fewer ovules than the flowers of outcrossed progeny. Selfed progeny of L. nanus also had significantly lower rates of autofertility in comparison to outcrossed progeny. The significant effects of inbreeding on these mating system traits may indicate the presence of directional dominance at the loci underlying these characters. The consequences of these direct effects of inbreeding on reproductive traits for plants growing in natural populations may include nonadaptive changes in the outcrossing rate between generations.  相似文献   

15.
Most flowering plants are simultaneous hermaphrodites. Within species and even within local populations, sex allocation is usually highly plastic. Here, we link pollen sufficiency to the size of pollen-exchanging groups (i.e., pollen neighborhoods) and to pollen transfer efficiency, using an individual-based game-theoretic framework to determine the stable distribution of sex allocation that does not require the unrealistic assumption of infinitely large, panmictic populations. In the absence of selfing, we obtain the novel result that pollen limitation destabilizes hermaphroditism and favors separate sexes, whereas hermaphroditism remains stable without pollen limitation. With mixed mating, hermaphroditism is stable except when the fitness value of selfed offspring is less than half that of outcrossed offspring (i.e., strong inbreeding depression). In that case, the size of pollen neighborhoods, pollen transfer efficiencies, and the relative fitness of selfed offspring determine whether separate sexes or hermaphroditism is the stable outcome. The model thus predicts that separate sexes can derive from either of two ancestral states: obligate outcrossing under pollen limitation, or mixed mating (competing self-fertilization) under severe inbreeding depression. It also predicts conditions under which variance in sex-allocation among hermaphrodites within pollen exchanging groups along a gradient of pollen limitation can range from high (dioecy) to near zero (equal proportions of male and female investment).  相似文献   

16.
Dimorphic cleistogamy is a specialized form of mixed mating system where a single plant produces both open, potentially outcrossed chasmogamous (CH) and closed, obligately self-pollinated cleistogamous (CL) flowers. Typically, CH flowers and seeds are bigger and energetically more costly than those of CL. Although the effects of inbreeding and floral dimorphism are critical to understanding the evolution and maintenance of cleistogamy, these effects have been repeatedly confounded. In an attempt to separate these effects, we compared the performance of progeny derived from the two floral morphs while controlling for the source of pollen. That is, flower type and pollen source effects were assessed by comparing the performance of progeny derived from selfed CH vs. CL and outcrossed CH vs. selfed CH flowers, respectively. The experiment was carried out with the herb Ruellia nudiflora under two contrasting light environments. Outcrossed progeny generally performed better than selfed progeny. However, inbreeding depression ranges from low (1%) to moderate (36%), with the greatest value detected under shaded conditions when cumulative fitness was used. Although flower type generally had less of an effect on progeny performance than pollen source did, the progeny derived from selfed CH flowers largely outperformed the progeny from CL flowers, but only under shaded conditions and when cumulative fitness was taken into account. On the other hand, the source of pollen and flower type influenced seed predation, with selfed CH progeny the most heavily attacked by predators. Therefore, the effects of pollen source and flower type are environment-dependant and seed predators may increase the genetic differences between progeny derived from CH and CL flowers. Inbreeding depression alone cannot account for the maintenance of a mixed mating system in R. nudiflora and other unidentified mechanisms must thus be involved.  相似文献   

17.
Thrips and/or aphids played an important role in the self-pollination of two facultatively xenogamous herbs that inhabit wetlands in northwestern Iowa. In both Ranunculus sceleratus and Potentilla rivalis the fruit set and/or successful pollination of plants that were sprayed with malathion to kill thrips and aphids and caged to exclude typical flower visitors was substantially and significantly lower than that of open-pollinated and caged plants. We observed pollenbearing thrips and aphids on the flowers. The high fruit sets of emasculated flowers of R. sceleratus showed that insects moved pollen between flowers, and our observations of bees collecting pollen and moving between plants suggest that cross-pollination can occur in both species.  相似文献   

18.
Reproductive ecology of Agalinis acuta was investigated by examining potential for self-fertilization before and at anthesis, reproductive output from outcrossed vs. selfed matings, and effects of browsing, plant size, and conspecific plant density on seed and fruit production. These features of a plant species can provide indirect information pertinent to conservation such as patterns and maintenance of genetic diversity, risk associated with inbreeding depression, and changes in pollinator abundance or effectiveness. The species is self-compatible, with 97% of selfed flowers setting fruit; pollinators were not required for reproduction. However, seed set in self-pollinated fruits averaged 17-20% less than that in open-pollinated fruits. Geitonogamous and facilitated selfing are possible throughout anthesis and autonomous selfing is possible late in anthesis as corollas abscise. Delaying self-pollination until after outcrossing opportunities likely limits selfing rates and thus reduces risks associated with inbreeding but allows reproduction in absence of pollinators. Supplementing pollen on open-pollinated flowers yielded no additional seed set over controls. Neither early-season browsing of primary stems nor conspecific plant density had significant effects on number of fruits per plant, on fruit size, or on number of seeds from open-pollinated flowers. Currently, reproduction appears to be high (about 2400 seeds/plant), and future risks due to lack of genetic diversity are likely low.  相似文献   

19.
Spatial separation of male and female reproductive structures (herkogamy) is a widespread floral trait that has traditionally been viewed as an adaptation that reduces the likelihood of self‐pollination. Here we propose that increased herkogamy may also influence another important aspect of plant mating: the diversity of pollen donors siring seeds within fruits. We test this hypothesis in Narcissus longispathus, a wild daffodil species with extensive variation in anther–stigma separation. To study the morphological basis of variation in herkogamy, floral measurements were undertaken in 16 populations of N. longispathus. We then quantified multilocus outcrossing rates and the correlation of outcrossed paternity in three of these populations sampled over several years. Mating system estimates were calculated for each population and year, and also separately for groups of plants that differed markedly in herkogamy within each population and year. In N. longispathus herkogamy was much more variable than other floral traits, and was more closely related to style length than to anther position. Averaged across populations and years, plants with high herkogamy had similar outcrossing rates (0.683) to plants with intermediate (0.648) or low herkogamy (0.590). However, a significant linear trend was found for correlation of outcrossed paternity, which increased monotonically from high herkogamy (0.221), through intermediate herkogamy (0.303) to low herkogamy (0.463) plants. The diversity of pollen donors siring seeds of high herkogamy Narcissus flowers was thus consistently greater than the diversity of pollen donors siring seeds of low herkogamy flowers. Results of this study contribute to the emerging consensus that floral traits can simultaneously influence several aspects of plant mating system in complex ways, thus extending the traditional focus centred exclusively on patterns and relative importance of self‐ and cross‐fertilisation.  相似文献   

20.
In plants capable of both self-fertilization and outcrossing, the selfing rate depends on the proportion of self pollen in pollen loads and on the relative postpollination success of self pollen in siring offspring. While the composition of pollen loads is subject to unpredictable variation, paternity success of self vs. outcross pollen following pollen deposition may be controlled by maternal plants. This study examined postpollination paternity success in Clarkia gracilis ssp. sonomensis, in which deposition of self pollen is common. Pure loads of self and outcross pollen produced similar numbers of mature seeds, but equal mixtures of self and outcross pollen yielded more than three times as many outcrossed offspring as selfed offspring. The finding that the paternity success of self pollen depends on whether it is in competition with outcross pollen helps to explain an earlier finding that the selfing rate in experimental populations was highest when pollinator activity was lowest. Cryptic self-incompatibility allows paternity by self pollen when outcross pollen is unavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号