首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of vitamin A on epithelial morphogenesis in vitro   总被引:1,自引:0,他引:1  
Quiescent confluent monolayers of WI-38 human diploid fibroblasts and of 3T6 mouse fibroblasts were stimulated to proliferate by nutritional changes. WI-38 cells had a stringent requirement for serum factor(s) but 3T6 did not require serum in order to proliferate again. In both cell lines there was an early increase in the synthesis of non-histone chromosomal proteins shortly after stimulation of cellular proliferation and this increase was linearly correlated to the number of cells entering the S phase several hours later. Only WI-38 diploid fibroblasts, however, showed an early increase in chromatin template activity 1 h after stimulation of cellular proliferation, while chromatin template activity in 3T6 cells remained unchanged. It is suggested that the activation of gene function represents a critical step for the passage of WI-38 cells in the G0 resting phase to the G1 phase of the cell cycle. It is also suggested that 3T6 cells are unable to enter or stay in a G0 phase but can be arrested predominantly in the G1 phase by nutritional deficit, probably amino acid starvation.  相似文献   

2.
Some events in the prereplicative phase of WI-38 human diploid fibroblasts stimulated to proliferate are found to be a function of the length of time the cells have been quiescent. At 5 days after plating, when the cells first become confluent, the prereplicative phase upon stimulation by a nutritional change is relatively short, DNA synthesis begins at 8 h after stimulation, and there is no increase in chromatin template activity. At 9 days after plating the prereplicative phase of stimulated cells is lengthened to 14 h and there is an increase in chromatin template activity within 1 h of stimulation. Finally, in 18-day cells, the prereplicative phase is lengthened even further to 20 h, and there is a lag after stimulation before the increase in chromatin template activity. It is proposed that confluent WI-38 cells initially arrest in G 1, subsequently pass into G 0, and continue to go deeper into G 0 as they remain quiescent.  相似文献   

3.
Modulation of ion permeability during the cell cycle is one of the key events in cell cycle progression. We have compared the effects of K+ and Cl- channel blockers on the cell cycle in synchronous and asynchronous NIH3T3 cells. The Cl- channel blocker 5-N-2-(3-phenylpropylamino) benzoic acid (NPPB; 0.2 mM) inhibited entry into S phase in synchronous cells but not in asynchronous cells, while the K+ channel blocker 4-aminopyridine (4-AP) showed similar inhibitory effects in both conditions. In NIH3T3 cells synchronized by serum deprivation/replenishment, G0-to-G1 transition occurred within 8 h after serum addition, and the G1/S checkpoint at 10-14 h. NPPB applied only at 0-8 or 8-14 h after serum addition inhibited entry into S phase. Cl- permeability measured as 125I efflux increased at 4 and 10 h after serum addition. Ki-67-negative cells, which represent quiescent G0 phase cells, progressively decreased in number until 8 h after serum addition. The Cl- channel blockers (NPPB and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid [DIDS]) but not the K+ channel blocker (4-AP) significantly decreased the rate of reduction in number of Ki-67-negative cells. These data indicate that an increase in Cl- permeability plays an important role in reentry of quiescent cells into the proliferating phase, in addition to the known effects on passage through the G1/S checkpoint.  相似文献   

4.
5.
6.
7.
We have compared the nucleosomal organization of c-Ha-rasVal 12 oncogene-transformed NIH-3T3 fibroblasts with that of normal fibroblasts by using micrococcal nuclease (MNase) as a probe for the chromatin structure. The bulk chromatin from asynchronously and exponentially growing ras-transformed cells was much more sensitive to MNase digestion than chromatin from the normal cells. Southern hybridization analyses of the MNase digests with probes specific for the ornithine decarboxylase (odc) and c-myc genes showed that the coding and/or 3' end regions of these growth-inducible genes carry a nucleosomal organization both in ras-transformed and normal cells. Studies with cells synchronized by serum starvation showed that in both cell lines the nucleosomal organization of chromatin is relatively condensed at the quiescent state, becomes highly decondensed during the late G1 phase of the cell cycle, and starts again to condense during the S phase. However, in ras-transformed cells the decondensation state stayed much longer than in normal cells. Moreover, irrespective of the phase of the cell cycle the bulk chromatin as well as that of the odc and c-myc genes was more sensitive to MNase digestion in the ras-transformed cell than in the normal fibroblast. Decondensation of the chromatin was also observed in the normal c-Ha-ras protooncogene-transfected cells, but to a lesser extent than in the mutant ras-transformed cells. Whether the increased degree of chromatin decondensation plays a regulatory role in the increased expression of many growth-related genes in the ras-transformed cells remains an interesting object of further study.  相似文献   

8.
9.
The properties of DNA in situ as reflected by its staining with acridine orange are different in quiescent nonstimulated lymphocytes as compared with interphase lymphocytes that have entered the cell cycle after stimulation by mitogens. The difference is seen after cell treatment with buffers at pH 1.5 (1.3-1.9 range) followed by staining with acridine orange at pH 2.6 (2.3-2.9). Under these conditions the red metachromatic fluorescence of the acridine orange-DNA complex is higher in quiescent cells than in the cycling lymphocytes while the orthochromatic green fluorescence is higher in the cycling, interphase cells. The results suggest that DNA in condensed chromatin of quiescent lymphocytes (as in metaphase chromosomes) is more sensitive to acid-denaturation than DNA in dispersed chromatin of the cycling interphase cells. The phenomenon is used for flow cytometric differentiation between G0 and G1 cells and between G2 and M cells. In contrast to normal lymphocytes the method applied to neoplastic cells indicates the presence of cell subpopulations with condensed chromatin but with DNA content characteristic not only of G1 but also of S and G2 cells. The possibility that these cells represent quiescent (resting) subpopulations, arrested in G1, S and/or G2, is discussed.  相似文献   

10.
11.
Several studies have shown that both quiescent and proliferating somatic donor cells can be fully reprogrammed after nuclear transfer (NT) and result in viable offspring. So far, however, no comparative study has conclusively demonstrated the relative importance of donor cell cycle stage on nuclear cloning efficiency. Here, we compare two different types of bovine fetal fibroblasts (BFFs) that were synchronized in G(0), G(1), and different phases within G(1). We show that for non-transgenic (non-TG) fibroblasts, serum starvation into G(0) results in a significantly higher percentage of viable calves at term than synchronization in early G(1) or late G(1). For transgenic fibroblasts, however, cells selected in G(1) show significantly higher development to calves at term and higher post-natal survival to weaning than cells in G(0). This suggests that it may be necessary to coordinate donor cell type and cell cycle stage to maximize overall cloning efficiency.  相似文献   

12.
The human proliferation-associated epitope recognized by the Ki-67 monoclonal antibody (MAb) was detected in proliferating normal and neoplastic cells of many mammalian species (lamb, calf, dog, rabbit, rat) besides human. In contrast, Ki-67 stained proliferating cells from other species weakly (mouse) or not at all (swine, cat, chicken, pigeon). The immunostaining pattern of Ki-67 in animal tissues was identical to that previously described in human: Ki-67 reacted only with cells known to proliferate (e.g., germinal center cells, cortical thymocytes) but not with resting cells (e.g., hepatocytes, brain cells, renal cells); this MAb produced a characteristic nuclear staining pattern (e.g., stronger labeling of nucleoli than of the rest of the nuclei and staining of chromosomes in mitotic figures); and Ki-67 crossreacted with the squamous epithelium in both animal and human tissues. In vitro studies showed that when quiescent (Ki-67-negative) NIH 3T3 fibroblasts or bovine peripheral blood lymphocytes were induced to proliferate, the appearance of Ki-67-positive cells paralleled the induction of cell proliferation caused by addition of fetal calf serum or PHA, respectively, to the cultures, and in both human and rat proliferating cells the Ki-67 expression closely paralleled the incorporation of [3H]-thymidine. These findings indicate that the epitope recognized by the Ki-67 MAb in human and animal species is the same. The widespread evolutionary conservation of the human proliferation-associated epitope recognized by the Ki-67 MAb suggests that it and/or its carrier molecule may play an important role in regulation of cell proliferation.  相似文献   

13.
The relationship between total glutathione (GSH) content and cell growth was examined in 3T3 fibroblasts. The intracellular GSH level of actively growing cultures gradually decreases as these cells become quiescent by either serum deprivation or high cell density. Upon mitogenic stimulation of sparse, quiescent (G0/G1) cultures with serum, there is a rapid 2.3-fold elevation in intracellular GSH levels which is maximal by 1 h and returns to baseline by 2 h. This is followed by a more gradual increase in GSH content as cells enter the S phase. In addition, the elevation in GSH content is required for maximum induction of DNA synthesis. Treatments that prevent the early increase in intracellular GSH levels do not affect protein synthesis but result in a reversible dose-dependent decrease in the percent of cells capable of entering S phase. These results indicate that GSH may be important in the regulation of cellular proliferation.  相似文献   

14.
Inhibition of apoptosis in serum starved porcine embryonic fibroblasts   总被引:2,自引:0,他引:2  
In nuclear transplantation, serum starvation is a general method to synchronize donor cells at the quiescent stage (G(0)) of the cell cycle. However, serum starvation during culture of mammalian cells may induce cell death, especially through apoptosis, thus contributing to the low efficiency of nuclear transplantation. This study was performed to characterize apoptosis during serum starvation and to determine the effects of apoptosis inhibitors such as a protease inhibitor [alpha(2)-macroglobulin (MAC)] and antioxidants [N-acetylcysteine (NAC), glutathione (GSH)] on serum starved porcine embryonic fibroblasts (PEF). PEF, collected from day 25-30 porcine fetuses, were cultured for 5 days in media containing 0.5% FBS to induce quiescence. Serum starved PEF showed typical morphology of apoptotic cells and stained for DNA fragmentation by TUNEL assay (26.7%). All apoptosis inhibitors tested in this study significantly (P < 0.05) reduced apoptosis of serum starved PEF, with antioxidants having better results (MAC: 7.4% vs. NAC: 1.0%, and GSH: 0.8%). Equally and importantly, the treatment with apoptosis inhibitors did not change the proportion of G(0)/G(1) stage cells. Therefore, the addition of MAC and antioxidants during serum starvation of PEF reduces apoptosis of quiescent fibroblasts and may contribute to increasing the efficiency of nuclear transplantation by improving the quality of donor nuclei.  相似文献   

15.
Sodium butyrate (6 mM) blocks the resumption of the cell division cycle in serum-deprived chemically transformed Balb/c-3T3 mouse fibroblasts (BP-A31). The inhibition of G1 progression by sodium butyrate is not restricted to a specific mitogenic signaling pathway and is equally effective when tetradecanoyl phorbol acetate (TPA), insulin, or fetal calf serum (FCS) is used as inducer. The inhibitor acts in early as well as late G1 phase as indicated by experiments in which inhibitor was added and withdrawn at different times after restimulation of quiescent cells by FCS. At the gene expression level, sodium butyrate does not affect the inducibility of early cell cycle-related genes (c-myc, c-jun) while blocking the induction of cdc 2 mRNA, a late G1 marker. We conclude that sodium butyrate does not interfere with the growth factor signaling pathways regulating the (early) cell cycle-related gene expression. However, the presence of sodium butyrate early in G1 phase inhibits the cascade of events leading eventually to the expression of late G1-characteristic genes such as cdc2. The antimitogenic activity of sodium butyrate may be related to its interference with an (unknown) process involved in the "mitogenic" cascade.  相似文献   

16.
The monoclonal antibody Ki-67 detects a nuclear antigen that is present only in proliferating cells. The aim of the present investigation was to clarify whether the Ki-67 nuclear antigen is restricted in its expression to certain phases of the cell cycle. All experiments consistently showed that the Ki-67 nuclear antigen is present in S, G2, and M phase, but is absent in G0. However, the results concerning Ki-67 antigen expression in G1 phase varied: cells passing the early events of mitogen triggered transition from G0 to G1, i.e., G1T and first G1A, lacked the Ki-67 nuclear antigen, whereas G1 cells after mitosis were constantly Ki-67-positive. This result suggests that after mitosis cells might not follow the same metabolic pathways as G0 cells do when entering G1 for the first time. Therefore, we suggest that the early stages of mitogen stimulation represent initial sequences of proliferation and not parts of the cell cycle. Because our data show that the Ki-67 nuclear antigen is present throughout the cell cycle, immunostaining with monoclonal antibody Ki-67 provides a reliable means of rapidly evaluating the growth fraction of normal and neoplastic human cell populations.  相似文献   

17.
Elevation of intracellular casein kinase II (CKII) levels through microinjection of purified CKII results in the rapid and transient induction of c-fos in quiescent rat embryo fibroblasts, and activation of quiescent cells by serum is accompanied by the nuclear relocation of endogenous CKII. The induction of c-fos by CKII is inhibited by coinjection of oligonucleotides corresponding to the sequence of the serum response element (SRE) present in the c-fos promoter, indicating that competitive displacement of positive factors from the endogenous c-fos SRE prevents c-fos induction by CKII. Furthermore, the expression of c-fos induced by either CKII injection or serum activation is also inhibited by microinjection of antibodies against the 67 kDa serum response factor (p67SRF) indicating the absolute requirement of p67SRF in this process. Finally, we show the specific phosphorylation of p67SRF in vivo following microinjection of CKII into quiescent cells. Together, these data strongly support that CKII induces c-fos expression through binding/activation of the phosphorylated p67SRF at the SRE sequence.  相似文献   

18.
Cyclin E-associated CDK2 activity is required for the initiation of DNA synthesis in human cells. CDK2 activity is tightly regulated; CDK2 must be in the nucleus, bound to a cyclin, phosphorylated on T160, and dephosphorylated on T14/Y15 for complete kinase activation. Nuclear localization exposes CDK2 to activating enzymes (CAK, Cdc25A) in stimulated cells. Previous studies from our lab indicate CDK2 nuclear localization and cyclin E co-expression are insufficient to cause CDK2 activation or T160 phosphorylation in stimulated IIC9 cells; these activities still require serum stimulation and ERK kinase activity. Recent studies have implicated a role for origin of replication (ORC) licensing proteins in the activation of G1/S Cdks. In this study, we show that CDK2 associates with chromatin and Cdc6 in an ERK-dependent manner following stimulation of IIC9 CHEF cells. We show that nuclear-localized CDK2 (CDK2-NLS) ectopically expressed with cyclin E requires mitogenic stimulation and ERK activation for chromatin association, in addition to previously shown kinase activation and T160 phosphorylation in IIC9 cells. Additionally, we show that expression of Cdc6 in stimulated IIC9 cells treated with ERK inhibitor rescues CDK2-NLS chromatin association, kinase activation, and T160 phosphorylation. From the above data, we deduce ERK-dependent CDK2 activation is due in part to ERK-dependent Cdc6 expression. To examine the role of Cdc6 directly in stimulated primary human fibroblasts, we used RNA interference to attenuate the expression of Cdc6. We show that Cdc6 expression is required for CDK2 chromatin association and kinase activation in stimulated primary human fibroblasts. Additionally, we show that Cdc6 expression is required for the initiation of DNA synthesis and S phase entry in stimulated primary human fibroblasts. Ultimately, this data implicates Cdc6 expression as an important mitogen-induced mechanism in the activation of CDK2/cyclin E, the initiation of DNA synthesis, and the regulation of G1-S phase progression.  相似文献   

19.
The growth fraction, estimated by the monoclonal antibody Ki-67 labeling, and DNA content, assessed by ethidium bromide staining, were determined simultaneously in K562 leukemic cells by flow cytometry. A multiparametric analysis enabled the fraction of the cell population with G1, S, and G2 + M contents in Ki-67-positive and Ki-67-negative cells to be evaluated. Butyric acid (BUT) was used as positive control. The fraction of Ki-positive cells decreased with the BUT concentration, while the proportion of cells with G1 DNA content increased only in the Ki-negative cells. Adriamycin, aclacinomycin A, and fagaronine induced differentiation, as assessed by benzidine staining and glycophorin A expression. These drugs decreased the fraction of Ki-positive cells by more than 50% for both anthracyclines and by 25% for fagaronine. Following treatment, Ki-negative cells displayed a G1, but also a G2 and a S DNA content in different proportions, indicating that induction of quiescent cells by differentiating agents is not a uniform process and is worthy of interest.  相似文献   

20.
Secreted modular calcium-binding protein-2 (SMOC-2) is a recently-identified SPARC-related protein of unknown function. In mRNA profiling experiments we, found that SMOC-2 expression was elevated in quiescent (G0) mouse fibroblasts and repressed after mitogenic stimulation with serum. The G0-specific expression of SMOC-2 was similar to that of platelet-derived growth factor-beta receptor (PDGFbetaR), a major mitogenic receptor. Therefore, we tested a possible role for SMOC-2 in growth factor-induced cell cycle progression. SMOC-2 overexpression augmented DNA synthesis induced by serum and fibroblast mitogens (including PDGF-BB and basic fibroblast growth factor). Conversely, SMOC-2 ablation by using small interfering RNA attenuated DNA synthesis in response to PDGF-BB and other growth factors. Mitogen-induced expression of cyclin D1 was attenuated in SMOC-2-ablated cells, and cyclin D1-overexpressing cells were resistant to inhibition of mitogenesis after SMOC-2 ablation. Therefore, cyclin D1 is limiting for G1 progression in SMOC-2-deficient cells. SMOC-2 ablation did not inhibit PDGF-induced PDGFbetaR autophosphorylation or PDGF-BB-dependent activation of mitogen-activated protein kinase and Akt kinases, suggesting that SMOC-2 is dispensable for growth factor receptor activation. However, integrin-linked kinase (ILK) activity was reduced in SMOC-2-ablated cells. Ectopic expression of hyperactive ILK corrected the defective mitogenic response of SMOC-2-deficient cells. Therefore, SMOC-2 contributes to cell cycle progression by maintaining ILK activity during G1. These results identify a novel role for SMOC-2 in cell cycle control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号