首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitric oxide (NO) plays important roles in diverse physiological processes In plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.  相似文献   

2.
Nitric oxide (NO) plays important roles in diverse physiological processes In plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.  相似文献   

3.
软体动物的一氧化氮及其合酶的研究进展   总被引:6,自引:0,他引:6  
一氧化氮作为一种重要的信息分子,参与调节软体动物的嗅觉、运动、取食、机体防御及学习行为。本文从生理、生化、形态定位以及信号转导几方面综述了有关软体动物一氧化氮及其合酶的最新研究进展。  相似文献   

4.
镉是植物生长的非必需元素,它具有很大的生物毒性,与其它重金属相比,更易被植物吸收积累。通过采用营养液水培试验的方法,研究了外源一氧化氮(Nitric oxide,NO)对不同浓度Cd^2+(100μmol L^-1.300μmol L^-1,500μmol L^-1)胁迫下黄瓜幼苗生长、叶片光合特性以及活性氧代谢的影响。结果表明:300μmol L^-1NO供体硝普钠(Sodium nitrop russide,SNP)能显著缓解镉胁迫时黄瓜植株造成的伤害,对300μmol L^-1 Cd^2+处理的黄瓜幼苗缓解效果最好,可提高幼苗的生长量,增强幼苗叶片超氧物歧化酶(SOD)、过氧化物酶(POD)活性;提高了叶片叶绿素和脯氨酸(Pro)含量;降低了叶片内二醛(MDA)含量。  相似文献   

5.
通过草酸及其与不同抑制剂亚甲基蓝、EGTA、氯丙嗪和Li+组合处理黄瓜叶片,研究了草酸与抑制剂不同处理组合方式对黄瓜叶片POD活性和叶片病情指数的影响,探讨NO、钙信使系统在草酸诱导叶片抗霜霉病中的作用.结果显示,10~70mmol/L草酸均能不同程度诱导黄瓜叶片POD活性的升高,提高叶片对黄瓜霜霉病的抗病性,降低叶片病情指数,并以30mmol/L效果最好.4种抑制剂分别与30mmol/L草酸同时或先于草酸处理,或草酸处理后一定时间再用抑制剂处理,均明显抑制黄瓜叶片POD活性的升高及病情指数的降低.研究表明,NO、Ca2+、钙调素(CaM)和磷酸肌醇均可能参与了草酸诱导黄瓜霜霉病抗性的信号转导过程.  相似文献   

6.
7.
Abstract: Nitric oxide (NO) is reported to cause neuronal damage through various mechanisms. The present study tests the hypothesis that NO synthase inhibition by N ω-nitro- l -arginine (NNLA) will result in decreased oxygen-derived free radical production leading to the preservation of cell membrane structure and function during cerebral hypoxia. Ten newborn piglets were pretreated with NNLA (40 mg/kg); five were subjected to hypoxia, whereas the other five were maintained with normoxia. An additional 10 piglets without NNLA treatment underwent the same conditions. Hypoxia was induced with a lowered FiO2 and documented biochemically by decreased cerebral ATP and phosphocreatine levels. Free radicals were detected by using electron spin resonance spectroscopy with a spin trapping technique. Results demonstrated that free radicals, corresponding to alkoxyl radicals, were induced by hypoxia but were inhibited by pretreatment with NNLA before inducing hypoxia. NNLA also inhibited hypoxia-induced generation of conjugated dienes, products of lipid peroxidation. Na+,K+-ATPase activity, an index of cellular membrane function, decreased following hypoxia but was preserved by pretreatment with NNLA. These data demonstrate that during hypoxia NO generates free radicals via peroxynitrite production, presumably causing lipid peroxidation and membrane dysfunction. These results suggest that NO is a potentially limiting factor in the peroxynitrite-mediated lipid peroxidation resulting in membrane injury.  相似文献   

8.
Nitric oxide (NO) is a highly reactive, membrane-permeable free radical, which has recently emerged as an important antioxidant. Here we investigated the protective effect of NO against the toxicity and NH4+ accumulation in rice leaves caused by excess CuSO4 (10 mmol L−1). It was found that free radical scavengers (sodium benzoate, thiourea, and reduced glutathione) reduced the toxicity and NH4+ accumulation in rice leaves caused by excess CuSO4. NO donor sodium nitroprusside (SNP) was also effective in reducing CuSO4-induced toxicity and NH4+ accumulation in rice leaves. The protective effect of SNP on the toxicity and NH4+ accumulation can be reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, suggesting that the protective effect of SNP is attributable to NO released. Results obtained in the present study suggest that reduction of CuSO4-induced toxicity and NH4+ accumulation by SNP is most likely mediated through its ability to scavenge active oxygen species.  相似文献   

9.
Abstract : The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor ( Z )-1-[(2-aminoethyl)- N -(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia.  相似文献   

10.
11.
Superoxide and nitric oxide are ubiquitous physiological free radicals that are responsible for many pathological disorders. Both radicals by themselves are relatively harmless but are the precursors of many toxic species such as peroxy and hydroxyl radicals, hydrogen peroxide, and peroxynitrite. However, it has been shown now that both superoxide and nitric oxide are also able to perform important signaling functions in physiological and pathophysiological processes. Wrongly named “superoxide,” the radical anion of dioxygen is not a super-oxidant but the strong super-nucleophile, an efficient catalyst of heterogenic nucleophilic reaction. Due to this, superoxide plays an important role in many enzymatic processes such as the phosphorylation and activation of numerous protein kinases. On the other hand, superoxide inhibits the activation of phosphatases, the enzymes catalyzed by dephosphorylation of protein kinases. We suggest that superoxide catalyzes these enzymatic processes as a result of its nucleophilic properties. Another important physiological function of superoxide and nitric oxide is their competition for the interaction with mitochondrial cytochrome c oxidase. Disturbance of superoxide/nitric oxide balance leads to the dysfunction of mitochondria and the enhancement of apoptosis and oxidative stress, which are primary causes of various pathological disorders and aging. In conclusion, interplay between superoxide and nitric oxide, one of major factors of aging development, is considered.  相似文献   

12.
植物一氧化氮生物学的研究进展   总被引:11,自引:0,他引:11  
一氧化氮(NO)是植物中的一种关键的信号分子.在植物中,NO的潜在来源包括一氧化氮合成酶、硝酸还原酶、黄嘌呤氧化还原酶和非酶促途径.NO能促进植物生长,延缓叶片、花和果实衰老,促进休眠和需光种子的萌发,能与植物激素相互作用调节气孔运动,诱导程序性细胞死亡和防御相关基因的表达,并在逆境中作为一种抗氧化剂起作用.NO的细胞内信号反应包括环鸟苷酸、环腺苷二磷酸核糖的产生和细胞质Ca2 浓度的增加,其信号转导途径及其生物化学和细胞学本质还不十分清楚.  相似文献   

13.
The capacity of human sperm fertilization is principally dependent on sperm motility and membrane integrity. Oxygen-derived free radicals, such as superoxide anion, are known to impair sperm motility and membrane integrity by inducing membrane lipid peroxidation (LPO). Nitric oxide (NO), a biologically active free radical, has recently been shown to inactivate superoxide and increase intracellular guanosine-3', 5'-cyclic monophosphate (cGMP). The aim of this study is to investigate the effects of NO on human sperm motility, viability, lipid peroxidation and cGMP in fertile and asthenozoospermic infertile individuals in vitro. Semen samples were obtained from 10 fertile volunteers and 10 asthenozoospermic infertile patients. Washed spermatozoa were incubated at 37°C in Ham's F-10 medium with 0, 25, 50, 100, 200, or 400nM sodium nitroprusside (SNP, Na2 [Fe(CN) 5NO] · 2H2O), a nitric oxide releaser. Samples were analyzed for viability, determined by eosin-Y dye exclusion method at 0, 1, 2, 3, 5 and 6 h of incubation; motility, determined by the trans-membrane migration method within 2 h of incubation; LPO determined by malondi-aldehyde (MDA) -thiobarbituric acid method at 3 h of incubation; and the intracellular cGMP, determined by 125I-cGMP radioimmunoassay at 3 h of incubation. The results showed: in both fertile and infertile samples, viability, trans-membrane migration ratio and the levels of intracellular cGMP in 25-100nM SNP-treated spermatozoa were significantly higher than those in control groups, while MDA contents in treated groups were significantly lower than those in controls. However, when concentrations of SNP increased to 200-400nM, the opposite effects were exhibited. The effects of SNP on these processes were biphasic within 25-400nM. The most effective concentration was 100nM. These data suggested that NO is beneficial to sperm viability and motility in both fertile and infertile individuals, and that reduction of lipid peroxidative damage to sperm membranes and increase of intracellular cGMP may be involved in these benefits.  相似文献   

14.
Liu ZW  Zhang T  Yang Z 《Neurochemical research》2007,32(11):1875-1883
Status epilepticus (SE) is associated with a significant risk of cognitive impairment, and the increase of nitric oxide (NO) releasing has been reported during SE. We investigated the effects of neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7-NI) and inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine (AG), on spatial performance of rats in the Morris water maze. Treatment with 7-NI, but not with AG, improved the performance of rats after SE not only in acquisition of the task but also in probe test. Furthermore, the level of SE-induced malondialdehyde (MDA), end product of lipid peroxidation, was significantly decreased only in animals receiving 7-NI injection. Taken together, the results of the present study provided evidence that the NO pathway contributed to oxidative stress after SE, and nNOS/NO pathway may underlie one of the potential mechanisms contributing to SE-induced spatial memory deficits.  相似文献   

15.
Nitric Oxide in Arthritis   总被引:8,自引:0,他引:8  
Nitric oxide’s (NO) involvement in arthritis was first demonstrated when levels of nitrite, a stable endproduct of NO metabolism, were shown to be elevated in serum and synovial fluid samples of rheumatoid and osteoarthritis patients. NO production by chondrocytes, its involvement in various biochemical events of cartilage metabolism, and the in vivo suppression of experimental arthritis by NO synthase inhibitors further implicated NO in arthritis. However, a conclusive role for NO in the pathogenesis of arthritis remains to be defined, in contrast to the NO-cGMP signal transduction pathway of endothelium-mediated vasodilation. It appears that NO has limited modulating effects in cartilage metabolism, with evidence for both protective and deleterious effects. Recent developments that contribute to our understanding of NO’s role in arthritis are discussed.  相似文献   

16.
17.
目的通过观察糖皮质激素对机械通气大鼠肺组织诱导型一氧化氮合酶(iNOS)及一氧化氮(NO)表达的影响,探讨糖皮质激素对呼吸机所致肺损伤(ventilator induced lung injury,VILI)的干预作用。方法 24只雄性Wistar大鼠随机分为对照组、机械通气组、地塞米松(DXM)干预组。用逆转录-聚合酶链反应(RT-PCR)法检测肺组织iNOS mRNA表达,用免疫组织化学染色法检测肺组织iNOS蛋白表达,用硝酸还原酶法测定肺组织和血浆NO含量。结果机械通气组和DXM干预组大鼠肺组织iNOS mRNA及其蛋白表达水平,以及血浆和肺组织NO含量均明显高于对照组(P〈0.01);DXM干预组上述指标与机械通气组比较均明显降低(P〈0.01)。结论糖皮质激素可通过抑制肺组织iNOS的表达,减少NO的生成,对机械通气大鼠肺组织具有保护作用。  相似文献   

18.
以低温敏感型甜瓜品种‘XL-1’和耐低温型品种‘红优’为试材,采用6℃低温处理0、1、3、6、12、24h及3d、5d和7d,研究低温胁迫下甜瓜幼苗叶片中NO合成和蔗糖代谢的变化特征。结果表明:(1)低温胁迫能提高甜瓜幼苗叶片中硝酸还原酶(NR)活性,诱导促进NO生成,其中耐低温型甜瓜‘红优’中NO对低温的响应时间更早,变化幅度更大。(2)与对照相比,低温胁迫处理提高了2种甜瓜幼苗叶片中蔗糖、果糖和葡萄糖含量,增加了蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SS)、酸性转化酶(AI)和中性转化酶(NI)活性,降低了淀粉含量。(3)低温胁迫处理使2种甜瓜叶片中渗透调节物质可溶性糖、可溶性蛋白、脯氨酸的含量上升。研究发现,低温胁迫通过增加甜瓜体内NO合成酶的活性刺激体内NO合成,通过促进蔗糖代谢相关酶的活性,提高蔗糖、果糖和葡萄糖的含量,从而响应低温胁迫,且低温胁迫诱导的糖分物质积累时间晚于NO的产生时间。  相似文献   

19.
《Chronobiology international》2013,30(4-5):739-758
The free radical nitric oxide (NO·) is involved in a variety of diverse biological processes from acting as a vasodilator in the cardiovascular system to being the rate-limiting component in the production of peroxynitrite (ONOO?), a contributor to neurodegenerative disorders such as multiple sclerosis (MS). Uric acid (UA), the end product of purine metabolism in humans and a selective inhibitor of toxic reactions attributed to radicals formed by the interaction of ONOO? and CO2, is generally low in MS patients. We investigated the relationship between serum ONOO?, CO2, and UA in MS patients and normal controls by comparing the circadian characteristics of the NO· metabolites nitrite/nitrate (NO), CO2, and UA. In this preliminary study, we found the functional relationship ascribed to the circadian timing of the peak and trough levels of NO, CO2, and UA in healthy subjects to be clearly altered in MS patients. These findings suggest that alterations in the temporal relationship between the 24 h pattern in serum ONOO? formation and UA may either contribute to or reflect the disease processes in MS.  相似文献   

20.
The free radical nitric oxide (NO·) is involved in a variety of diverse biological processes from acting as a vasodilator in the cardiovascular system to being the rate-limiting component in the production of peroxynitrite (ONOO-), a contributor to neurodegenerative disorders such as multiple sclerosis (MS). Uric acid (UA), the end product of purine metabolism in humans and a selective inhibitor of toxic reactions attributed to radicals formed by the interaction of ONOO- and CO2, is generally low in MS patients. We investigated the relationship between serum ONOO-, CO2, and UA in MS patients and normal controls by comparing the circadian characteristics of the NO· metabolites nitrite/nitrate (NO), CO2, and UA. In this preliminary study, we found the functional relationship ascribed to the circadian timing of the peak and trough levels of NO, CO2, and UA in healthy subjects to be clearly altered in MS patients. These findings suggest that alterations in the temporal relationship between the 24 h pattern in serum ONOO- formation and UA may either contribute to or reflect the disease processes in MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号