首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were conducted to determine the role that diffusion may play in the in vivo kinetics of the Escherichia coli periplasmic enzyme, alkaline phosphatase (AP, encoded by the gene pho A). Passive diffusion of solutes, from solution into the periplasm, is thought to occur mainly through porins in the outer membrane. The outer membrane therefore serves as a diffusion barrier separating a population of periplasmic enzymes from bulk substrate. E. coli strains containing a plasmid with the pho A gene linked to the lac promoter were used in this study in order to vary the amount of enzyme per cell. Alkaline phosphatase assays were conducted with intact cells, and the substrate concentration at half-maximum velocity (normally the Km for the enzyme) was determined as a function of enzyme concentration per cell. The results showed that diffusion of substrate to the enzyme caused as much as a 1000-fold change in this parameter, compared to that of purified enzyme. This suggested that diffusion was the rate-limiting step of the enzymatic reaction in these cells. In agreement with this type of reaction, Eadie-Hofstee and Lineweaver-Burk plots were not linear. At their extremes, these plots represented two types of kinetics. At high substrate concentration, equilibrium of substrate between bulk solution and the periplasm was achieved, and the kinetic properties conformed to Michaelis-Menten. At low substrate concentrations, there were a large number of free (unbound) enzymes, and each substrate molecule that entered the periplasm, through the diffusion barrier, resulted in product formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Outer membrane permeability of Escherichia coli O157:H7 was determined by an in vivo kinetic model with the periplasmic enzyme alkaline phosphatase [Martinez et al. (1996) Biochemistry 35, 1179-1186]. p-Nitrophenyl phosphate (PNPP) substrate, added to intact bacteria, must diffuse through the outer membrane to reach the enzyme. At low substrate concentration the bacterium was in the perfectly reactive state where all molecules that entered the periplasm were captured and converted to product. Transmembrane diffusion was rate limiting, and the permeability of the outer membrane was determined from kinetic properties. The O157:H7 strain grown at 30 degrees C showed one-sixth the permeability of wild-type E. coli grown at 30 degrees C. Wild-type bacteria grown at >/=37 degrees C show a physiological response with a shift in expression of outer membrane porins that lowered permeability to PNPP by approximately 70%. The O157:H7 strain did not display this temperature-sensitive shift in permeability even though a change in porin expression could be visualized by staining intensity of Omp F and Omp C on acrylamide gels. Altered behavior of the O157:H7 membrane was also indicated by a several thousand-fold lower response to transformation relative to wild-type E. coli. Matrix-assisted laser desorption ionization time of flight mass spectrometry and electrospray ionization mass spectrometry confirmed the expression of the Omp F and Omp C variants that are unique to E. coli O157:H7. This reduced outer membrane permeability can contribute to enhanced resistance of O157:H7 to antimicrobial agents.  相似文献   

3.
Sacchromyces cerevisiae protein disulfide isomerase (yPDI) was expressed in the E. coli periplasm by using plasmids encoding the OmpA-yPDI-(His)(6) fusion gene under the control of the araBAD, trc, or T7 promoter. The expression levels of yeast PDI under these promoters were compared. Our results showed that yeast PDI expressed into the periplasm could catalyze the formation of disulfide bonds in alkaline phosphatase, restoring the phoA(+) phenotype in dsbA(-) mutants. The yeast PDI was purified from the Escherichia coli periplasm and shown to exhibit catalytic properties comparable to those of the rat enzyme with reduced RNase as substrate. In vivo, coexpression of the yeast PDI increased the yield of bovine pancreatic trypsin inhibitor (BPTI) in E. coli by 2-fold, similar to the effect seen previously with the coexpression of the rat enzyme. However yeast PDI was more effective than rat PDI in facilitating the expression of active tissue plasminogen activator (tPA). These results point to differences in the substrate specificity of various PDI enzymes, at least in the context of the E. coli periplasm.  相似文献   

4.
For the location of the aminoglycoside-(3)-N-acetyltransferase isoenzyme II (AAC(3)-II) in the bacterial cell, two strains were studied: Escherichia coli HB101(pJV03), producing the 31-kDa AAC (3)-II enzyme, and E. coli HB101, which served as a control. From each strain five protein fractions were prepared: culture supernatant, and proteins occurring in the periplasm, cytoplasm, inner membrane and outer membrane. All fractions were tested for enzymatic activity of AAC(3)-II. Most of the acetylating activity was found in the cytoplasmic fraction. The distribution of marker enzymes showed a good separation between the periplasmic and the cytoplasmic fraction.  相似文献   

5.
An expression plasmid pPTK-hEGF2 was constructed to provide for the extracellular production of recombinant human epidermal growth factor by the Escherichia coli cells. The plasmid contained two expression cassettes, one of which carried a tandem of the fused genes ompF-hegf under the control of the tac promoter, ensuring regulated secretion of hEGF into the E. coli periplasm, and another one contained the kil gene from the ColE1 plasmid under the control of lac promoter. The regulated low-level biosynthesis of Kil protein increased the permeability of E. coli outer membrane for periplasmic proteins. This enabled the recombinant proteins secreted into the cell periplasm to outflow into the cultural medium. As a result, the E. coli strains that harboured this plasmid construct produced effectively the recombinant hEGF into the cultural medium. The yields of hEGF produced by the nTG1(pPTK-hEGF2) and HB101(pPTK-hEGF2) strains reached 25 and 30 mg/l of cell culture after 14 and 18 h of cultivation, respectively. The hEGF preparation isolated possessed biological activity both in vivo and in vitro.  相似文献   

6.
In Escherichia coli, the intrinsic levels of resistance to multiple antimicrobial agents are produced through expression of the three-component multidrug efflux system AcrAB-TolC. AcrB is a proton-motive-force-dependent transporter located in the inner membrane, and AcrA and TolC are accessory proteins located in the periplasm and the outer membrane, respectively. In this study, these three proteins were expressed separately, and the interactions between them were analyzed by chemical cross-linking in intact cells. We show that AcrA protein forms oligomers, most probably trimers. In this oligomeric form, AcrA interacts specifically with AcrB transporter independently of substrate and TolC.  相似文献   

7.
E F Eppens  N Nouwen    J Tommassen 《The EMBO journal》1997,16(14):4295-4301
The transport of bacterial outer membrane proteins to their destination might be either a one-step process via the contact zones between the inner and outer membrane or a two-step process, implicating a periplasmic intermediate that inserts into the membrane. Furthermore, folding might precede insertion or vice versa. To address these questions, we have made use of the known 3D-structure of the trimeric porin PhoE of Escherichia coli to engineer intramolecular disulfide bridges into this protein at positions that are not exposed to the periplasm once the protein is correctly assembled. The mutations did not interfere with the biogenesis of the protein, and disulfide bond formation appeared to be dependent on the periplasmic enzyme DsbA, which catalyzes disulfide bond formation in the periplasm. This proves that the protein passes through the periplasm on its way to the outer membrane. Furthermore, since the disulfide bonds create elements of tertiary structure within the mutant proteins, it appears that these proteins are at least partially folded before they insert into the outer membrane.  相似文献   

8.
Bacteroides thetaiotaomicron can utilize a variety of polysaccharides, including charged mucopolysaccharides such as chondroitin sulfate (CS) and hyaluronic acid (HA). Since the enzymes (chondroitin lyases I and II) that catalyze the first step in breakdown of CS and HA are located in the periplasm, we had proposed that the first step in utilization of these polysaccharides was binding to one or more outer membrane proteins followed by translocation into the periplasm, but no such outer membrane proteins had been shown to play a role in CS or HA utilization. Previously we have isolated a transposon-generated mutant, CS4, which was unable to grow on CS or HA but retained the ability to grow on disaccharide components of CS. This phenotype suggested that the mutation in CS4 either blocked the transport of the mucopolysaccharides into the periplasmic space or blocked the depolymerization of the mucopolysaccharides into disaccharides. We have mapped the CS4 mutation to a single gene, csuF, which is capable of encoding a protein of 1,065 amino acids and contains a consensus signal sequence. Although CsuF had a predicted molecular weight and pI similar to those of chondroitin lyases, it did not show significant sequence similarity to the Bacteroides chondroitin lyase II, a Proteus chondroitin ABC lyase, or two hyaluronidases from Clostridium perfringens and Streptococcus pyogenes, nor was any CS-degrading enzyme activity associated with csuF expression in Bacteroides species or Escherichia coli. The deduced amino acid sequence of CsuF exhibited features suggestive of an outer membrane protein. We obtained antibodies to CsuF and demonstrated that the protein is located in the outer membrane. This is the first evidence that a nonenzymatic outer membrane protein is essential for utilization of CS and HA.  相似文献   

9.
Treatment of growing Escherichia coli B with lanthanide ions [lanthanum(III), terbium(III), and europium(III)] and subsequent aldehyde-OsO4 fixation caused areas of high contrast to appear within the periplasm (the space between inner and outer membrane of the cell envelope). X-ray microanalysis of ultrathin sections of Epon-embedded or acrylic resin-embedded cells revealed the presence of the lanthanide and of phosphorus in the areas, whose contrast greatly exceeded that of other stained structures. Comparatively small amounts of the lanthanide were also present in the outer membrane and in the cytoplasm. The distribution of the periplasmic areas of high contrast was found to be random and not clustered at areas of current or future septum formation. Irregular cell shapes were observed after lanthanide treatment before onset of fixation. In contrast to glutaraldehyde-OsO4 fixation, glutaraldehyde used as the sole fixer caused a scattered distribution of the lanthanide. Cryofixation (slam-freezing) and freeze substitution revealed a lanthanum stain at both the periplasm and the outer part of the outer membrane. Deenergization of the cell membrane by either phage T4 or carbonyl cyanide m-chlorophenylhydrazone abolished the metal accumulation. Furthermore, addition of excess calcium, administered together with the lanthanide solution, diminished the quantity and size of areas of high contrast. Cells grown in media of high NaCl concentration revealed strongly stained areas of periplasmic precipitates, whereas cells grown under low-salt conditions showed very few high-contrast patches in the periplasm. Terbium treatment (during fixation) enhanced the visibility of the sites of inner-outer membrane contact (the membrane adhesion sites) in plasmolized cells, possibly as the result of an accumulation of the metal at the adhesion domains. The data suggest a rapid interaction of the lanthanides with components of the cell envelope, the periplasm, and the energized inner membrane.  相似文献   

10.
LamB, an outer membrane protein of Escherichia coli, is a component of the maltose-maltooligosaccharide transport system. We used p-nitrophenyl-alpha-D-maltohexaoside, a chromogenic analog of maltohexaose, and a periplasmic amylase that hydrolyzes this compound to study the LamB-mediated diffusion of p-nitrophenyl-alpha-D-maltohexaoside into the periplasm. Using this approach, we were able to characterize LamB in vivo as a saturable channel for maltooligosaccharides. Permeation through LamB follows Michaelis-Menten kinetics, with a Km of 0.13 mM and a Vmax of 3.3 nmol/min/10(9) cells. Previous studies suggested that maltose-binding protein increases the rate of maltooligosaccharide diffusion through LamB. We show here that, at least in strains that are unable to transport maltooligosaccharides into the cytoplasm, maltose-binding protein does not influence the rate of substrate diffusion. The periplasmic amylase had been previously described as being of the alpha-type. We have now purified this protein and analyzed its mode of action using chromogenic maltooligosaccharides of varying length. Analysis of the hydrolytic products revealed that the enzyme recognizes its substrate from the nonreducing that the enzyme recognizes its substrate from the nonreducing end and preferentially liberates maltohexaose, in contrast to the behavior of classical alpha-amylases that are endohydrolases. Using p-nitrophenyl-alpha-D-maltohexaoside as a substrate, we determined a Km of 3 microM and a Vmax of 0.14 mumol/min/mg of protein.  相似文献   

11.
Accumulation of tetracycline in Escherichia coli was studied to determine its permeation pathway and to provide a basis for understanding efflux-mediated resistance. Passage of tetracycline across the outer membrane appeared to occur preferentially via the porin OmpF, with tetracycline in its magnesium-bound form. Rapid efflux of magnesium-chelated tetracycline from the periplasm was observed. In E. coli cells that do not contain exogenous tetracycline resistance genes, the steady-state level of tetracycline accumulation was decreased when porins were absent or when the fraction of Mg(2+)-chelated tetracycline was small. This is best explained by assuming the presence of a low-level endogenous active efflux system that bypasses the outer membrane barrier. When influx of tetracycline is slowed, this efflux is able to reduce the accumulation of tetracycline in the cytoplasm. In contrast, we found no evidence of a special outer membrane bypass mechanism for high-level efflux via the Tet protein, which is an inner membrane efflux pump coded for by exogenous tetA genes. Fractionation and equilibrium density gradient centrifugation experiments showed that the Tet protein is not localized to regions of inner and outer membrane adhesion. Furthermore, a high concentration of tetracycline was found in the compartment that rapidly equilibrated with the medium, most probably the periplasm, of Tet-containing E. coli cells, and the level of tetracycline accumulation in Tet-containing cells was not diminished by the mutational loss of the OmpF porin. These results suggest that the Tet protein, in contrast to the endogenous efflux system(s), pumps magnesium-chelated tetracycline into the periplasm. A quantitative model of tetracycline fluxes in E. coli cells of various types is presented.  相似文献   

12.
K88 fimbriae are ordered polymeric protein structures at the surface of enterotoxigenic Escherichia coli cells. Their production and assembly requires a molecular chaperone located in the periplasm (FaeE) and a molecular usher located in the outer membrane (FaeD). FaeC is the tip component of the K88 fimbriae. We studied the expression of the subcloned faeC gene, the subcellular localization of FaeC and its interaction with the chaperone and the outer membrane usher. In the absence of the chaperone or the usher, FaeC could not be detected in E. coli cells harbouring the faeC gene and its ribosome binding site under contol of the IPTG inducible lpp/lac promoter/operator. The expression of FaeC was detectable in the presence of chaperone FaeE, but a direct interaction between the chaperone and FaeC was not found. The expression of FaeC was also detectable in cells co-expressing the outer membrane usher FaeD. Overexpression of FaeC after changing the faeC ribosome binding site appeared to induce lethality. Expression of subcloned FaeC in the absence of FaeE or FaeD could be detected when faeC was cloned under the tight control of the ara promoter/operator and when lethality induction was avoided. The direct interaction of FaeC with outer membranes containing the usher FaeD was studied by cell fractionation, isopycnic sucrose density gradient centrifugation, SDS-PAGE and immunoblotting. FaeC was found to bind to outer membranes containing FaeD or a FaeD-PhoA hybrid construct containing 215 amino-terminal residues of FaeD. This binding was not observed when control outer membranes without FaeD were used. No other K88 specific proteins were required for this interaction. The direct interaction between FaeC and FaeD in the outer membranes was shown by affinity blotting experiments. FaeE was not required for this interaction. Together these data indicate that the minor fimbrial subunit FaeC, unlike FaeG, H and F, does not have a strong interaction with the chaperone FaeE in the E. coli periplasm, but directly binds to the outer membrane molecular usher FaeD.  相似文献   

13.
All of the superoxide dismutase isozymes of Escherichia coli have been shown to occur in the cell matrix, and none have been found in the periplasm. This was the case with both E. coli B and E. coli K-12, whether grown on a low phosphate medium or on a Trypticase soy-yeast extract medium. Alkaline phosphatase was used as a marker of the periplasm; adenosine deaminase and glucose 6-phosphate dehydrogenase were used as matrix markers, and consistent results were obtained by osmotic shock, spheroplast formation, and use of a diazonium salt that penetrates the periplasm but cannot cross the plasma membrane. A previous report that the iron-containing superoxide dismutase of E. coli is a periplasmic enzyme is now seen to have been in error.  相似文献   

14.
Pathogenic bacteria assemble a variety of adhesive structures on their surface for attachment to host cells. Some of these structures are quite complex. For example, the hair-like organelles known as pili or fimbriae are generally composed of several components and often exhibit composite morphologies. In gram-negative bacteria assembly of pili requires that the subunits cross the cytoplasmic membrane, fold correctly in the periplasm, target to the outer membrane, assemble into an ordered structure, and cross the outer membrane to the cell surface. Thus, pilus biogenesis provides a model for a number of basic biological problems including protein folding, trafficking, secretion, and the ordered assembly of proteins into complex structures. P pilus biogenesis represents one of the best-understood pilus systems. P pili are produced by 80-90% of all pyelonephritic Escherichia coli and are a major virulence determinant for urinary tract infections. Two specialized assembly factors known as the periplasmic chaperone and outer membrane usher are required for P pilus assembly. A chaperone/usher pathway is now known to be required for the biogenesis of more than 30 different adhesive structures in diverse gram-negative pathogenic bacteria. Elucidation of the chaperone/usher pathway was brought about through a powerful combination of molecular, biochemical, and biophysical techniques. This review discusses these approaches as they relate to pilus assembly, with an emphasis on newer techniques.  相似文献   

15.
Outer membrane beta-barrel proteins in gram-negative bacteria, such as Escherichia coli, must be translocated from their site of synthesis in the cytoplasm to the periplasm and finally delivered to the outer membrane. At least a dozen proteins located in the cytoplasm, the periplasm, and both the inner and outer membranes are required to catalyze this complex assembly process. At normal growth temperatures and conditions the transport and assembly processes are so fast that assembly intermediates cannot be detected. Using cells grown at a low temperature to slow the assembly process and pulse-chase analysis with immunodetection methods, we followed newly synthesized LamB molecules during their transit through the cell envelope. The quality and reproducibility of the data allowed us to calculate rate constants for three different subassembly reactions. This kinetic analysis revealed that secB and secD mutants exhibit nearly identical defects in precursor translocation from the cytoplasm. However, subsequent subassembly reaction rates provided no clear evidence for an additional role for SecD in LamB assembly. Moreover, we found that surA mutants are qualitatively indistinguishable from yfgL mutants, suggesting that the products of both of these genes share a common function in the assembly process, most likely the delivery of LamB to the YaeT assembly complex in the outer membrane.  相似文献   

16.
The Kunitz type protease inhibitor aprotinin, containing three intramolecular disulfide bonds, was expressed on the surface of Escherichia coli by Autodisplay. For this purpose, the aprotinin gene was fused in-frame to the transporter domain encoding DNA region of the AIDA-I autotransporter protein. Culture of cells supplied with the artificial gene at reducing conditions resulted in the translocation of aprotinin to the cell surface. Correct folding of aprotinin was shown by high affinity to its target enzyme HLE. No surface translocation was detectable under non-reducing conditions, indicating the degradation of aprotinin in the periplasm. By the use of periplasmic-protease defective E. coli strains PW147, PW151, and PW152, under non-reducing conditions, significant amounts of aprotinin appeared in the periplasm but not at the surface. Our results indicate that aprotinin molecules, reaching stable conformation before transport across the outer membrane, are degraded in the periplasm due to proteolysis. In case folding can be prevented, i.e., by blocking disulfide bond formation in the periplasm, aprotinin is translocated and can adopt its active conformation at the cell surface.  相似文献   

17.
外源基因在大肠杆菌中表达是对基因重组技术的成功应用。外源基因在不同的大肠杆菌表达系统中表达产物可能定位于大肠杆菌空间结构的不同位置:胞质,胞质膜,胞周质,胞外膜和胞外培养基,五种表达定位方式各有其特点和用途 。  相似文献   

18.
Ferguson AD  Deisenhofer J 《Cell》2004,116(1):15-24
Transport systems of Gram-negative bacteria coordinate the passage of metabolites through the outer membrane, periplasm, and the cytoplasmic membrane without compromising the protective properties of the cell envelope. Active transporters orchestrate the import of metals against concentration gradients. These thermodynamically unfavorable processes are coupled to both an electrochemical proton gradient and the hydrolysis of ATP. Crystallographic structures of transport proteins now define in molecular detail most components of an active metal import pathway from Escherichia coli.  相似文献   

19.
In Gram-negative bacteria, beta-lactam antibiotics must overcome two barriers, the outer membrane and the periplasmic beta-lactamase, before they reach the targets of their action, penicillin-binding proteins. Although the barrier property of the outer membrane and catalytic property of the beta-lactamases have been studied and their significance in creating beta-lactam resistance emphasized, the interaction between these two barriers has not been treated quantitatively. Such treatment shows that the sensitivity, to a variety of beta-lactams, of the Escherichia coli K-12 cells containing very different levels of chromosomally coded AmpC beta-lactamase, or a plasmid-coded TEM-type beta-lactamase, can be predicted rather accurately from the penetration rate through the outer membrane and the hydrolysis rate in the periplasm. We further propose a new parameter, 'target access index', which is a quantitative expression of the result of interaction between the two barriers, and reflects the probability of success for the antibiotic to reach the targets.  相似文献   

20.
The subcellular localization of aminopeptidase N (previously called aminoendopeptidase) has been investigated. This enzyme was found to be partially released (30-40%) by osmotic shock or by converting Escherichia coli K10 cells to spheroplasts. However, in all other E. coli strains (K12, B/r, MRE 600, ML 308) tested, this enzyme is not released at all by these procedures and thus behaves like a cytoplasmic enzyme. The crypticity of aminopeptidase N is surprisingly low, 75-85% of the enzyme activity is directly assayable in intact cells of any E. coli strain. Various inhibitors of transport systems do not interfer with this assay. Aminopeptidase activity could also be assayed in spheroplasts, even when an insolubilized substrate was used, which suggests a surface location of this enzyme. As well, N-ethylmaleimide (0.4 mM), under conditions which do not allow penetration in the cytoplasm, caused 70% inhibition of aminopeptidase N. Binding of 125I-labeled antiaminopeptidase N antibody to spheroplasts (from K12 strain) was used to assay the orientation of aminopeptidase N in the membrane. This enzyme is exposed on the outer surface of the cytoplasmic membrane. Confirmation of this orientation was obtained by comparing the accessibility of aminopeptidase, alkaline phosphatase and beta-galactosidase to fluorescamine in intact cells. Only 16% of the total beta-galactosidase was labeled with this fluorescent reagent whereas 44-45% of the aminopeptidase N and 59% of the alkaline phosphatase were labeled. Electron microscopic visualization of insolubilized reaction products of aminopeptidase N within the cells showed that these products are located at the poles of the cells. Neither mutant cells which were devoid of aminopeptidase N activity nor parental strains with the enzyme activity inhibited with phenylmercuric chloride contained the characteristic black caps. Thus, it appears that the periplasm is enlarged at the poles of the cells and that the reaction product is mainly located in these places. Investigation of the type of interactions of aminopeptidase N with the plasma membrane only revealed that aminopeptidase N has mainly an electrostatic interaction with the outer surface, probably mediated by magnesium ion bridges. Additional interactions are involved since disruption of the integrity of the cytoplasmic membrane is required to totally release this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号