首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lobula plate (LP), which is the third order optic neuropil of flies, houses wide-field neurons which are exquisitely sensitive to motion. Among Diptera, motion-sensitive neurons of larger flies have been studied at the anatomical and physiological levels. However, the neurons ofDrosophila lobula plate are relatively less explored. AsDrosophila permits a genetic analysis of neural functions, we have analysed the organization of lobula plate ofDrosophila melanogaster. Neurons belonging to eight anatomical classes have been observed in the present study. Three neurons of the horizontal system (HS) have been visualized. The HS north (HSN) neuron, occupying the dorsal lobula plate is stunted in its geometry compared to that of larger flies. Associated with the HS neurons, thinner horizontal elements known as h-cells have also been visualized in the present study. Five of the six known neurons of the vertical system (VS) have been visualized. Three additional neurons in the proximal LP comparable in anatomy to VS system have been stained. We have termed them as additional VS AVS)-like neurons. Three thinner tangential cells that are comparable to VS neurons, which are elements of twin vertical system (tvs); and two cells with wide dendritic fields comparable to CH neurons of Diptera have been also observed. Neurons comparable to VS cells but with ‘tufted’ dendrites have been stained. The HSN and VS1-VS2 neurons are dorsally stunted. This is possibly due to the shape of the compound eye ofDrosophila which is reduced in the fronto-dorsal region as compared to larger flies  相似文献   

2.
3.
4.
The neurophysiology and antennal lobe projections of olfactory receptor neurons (ORNs) within sexually isomorphic short trichoid sensilla of male Heliothis virescens (Noctuidae: Lepidoptera) were investigated using cut-sensillum recording and cobalt-lysine staining. A total of 202 sensilla were sorted into 14 possible sensillar categories based on odor responses and physiology of ORNs within. Seventy-two percent of the sensilla identified contained ORNs stimulated by conspecific odors. In addition, a large number of ORNs were specifically sensitive to ß-caryophyllene, a plant-derived volatile (N = 41). Axons originating from ORNs associated with individual sensilla were stained with cobalt lysine (N = 67) and traced to individual glomeruli in the antennal lobe. ORNs with responses to female sex pheromone components exhibited similar axonal projections as those previously described from ORNs in long sensilla trichodea in male H. virescens. Antennal lobe axonal arborizations of ORNs sensitive to hairpencil components were also located in glomeruli near the base of the antennal nerve, whilst those sensitive to plant odorants projected to more medial glomeruli. Comparisons with ORNs described from female H. virescens supports the notion that glomeruli at the base of the antennal nerve are associated with conspecific and interspecific odorants, whereas those located medially are associated with plant volatiles.  相似文献   

5.
The Drosophila head and body have a regular species-specific pattern of strictly defined number of external sensory organs—macrochaetae (large bristles). The pattern constancy and relatively simple organization of each bristle organ composed of only four specialized cells makes macrochaetae a convenient model to study the developmental patterns of spatial structures with a fixed number of elements in specific positions as well as the mechanisms of cell differentiation. The experimental data on the major genes and their products controlling three stages of macrochaetae development—the emergence of proneural clusters in the imaginal disc ectoderm, the precursor cell determination in the proneural clusters, and the specialization of cells of the definitive sensory organ—were reviewed. The role of the achaete-scute gene complex, EGFR and Notch signaling, and selector genes in these processes was considered. Analysis of published data allowed us to propose an integrated diagram of the system controlling macrochaetae development in D. melanogaster.  相似文献   

6.
The putative regulatory relationships between Antennapedia (Antp), spalt major (salm) and homothorax (hth) are tested with regard to the sensitive period of antenna-to-leg transformations. Although Antp expression repressed hth as predicted, contrary to expectations, hth did not show increased repression at higher Antp doses, whereas salm, a gene downstream of hth, did show such a dose response. Loss of hth allowed antenna-to-leg transformations but the relative timing of proximal-distal transformations was reversed, relative to transformations induced by ectopic Antp. Finally, overexpression of Hth was only partially able to rescue transformations induced by ectopic Antp. These results indicate that there may be additional molecules involved in antenna/leg identity and that spatial, temporal and dosage relationships are more subtle than suspected and must be part of a robust understanding of molecular network behaviour involved in determining appendage identity in Drosophila melanogaster.  相似文献   

7.
The Suppressor of Underreplication ( SuUR) gene contributes to the regulation of DNA replication in regions of intercalary heterochromatin in salivary gland polytene chromosomes. In the SuUR mutant these regions complete replication earlier than in wild type and, as a consequence, undergo full polytenization. Here we describe the effects of ectopic expression of SuUR using the GAL4-UAS system. We demonstrate that ectopically expressed SuUR exerts qualitatively distinct influences on polyploid and diploid tissues. Ectopic expression of SuUR inhibits DNA replication in polytene salivary gland nuclei, and reduces the degree of amplification of chorion protein genes that occurs in the follicle cell lineage. Effects caused by ectopic SuUR in diploid tissues vary considerably; there is no obvious effect on eye formation, but apoptosis is observed in the wing disc, and wing shape is distorted. The effect of ectopic SuUR expression is enhanced by mutations in the genes E2F and mus209 ( PCNA). Differential responses of polyploid and diploid cells to ectopic SuUR may reflect differences in the mechanisms underlying mitotic cell cycles and endocycles.Communicated by G. P. Georgiev  相似文献   

8.
The morphology of the antennal sensilla of both male and female Habrobracon hebetor (Say) (Hymenoptera: Braconidae) is described using Scanning Electron Microscopy complemented with Transmission Electron Microscopy. Five types of innervated sensilla as well as uninnervated microtrichia were found. These types are: sensilla trichodea; s. chaetica; s. basiconica; s. coeloconica; and s. placodea. No differences in shape, basic structure, and types of antennal sensilla were found between males and females. The types of sensilla of both sexes of H. hebetor were compared with what has been described in other parasitic Hymenoptera, and their putative functions are discussed with reference to their morphology, distribution and ultrastructure.  相似文献   

9.
10.
We have studied the molecular characteristics of the yellow locus (y; 1–0.0), which determines the body color of phenotypically wild-type and mutant alleles isolated in different years from geographically distant populations of Drosophila melanogaster. According to the Southern blot, data restriction maps of the yellow locus of all examined strains differ from one another, as well as from Oregon stock. FISH analysis shows that, in the neighborhood of the yellow locus in the X chromosome, neither P nor hobo elements are found in y1–775 stock, while only hobo is found in these region in y1–859 and y1–866 stocks, only the P element is found in y+sn849 stock, and both elements are found in y1–719 stock. Thus, all yellow mutants studied are of independent origin. Locus yellow located on the end of X chromosome (region 1A5–8 on the cytologic map) carries significantly more transposon than retrotransposon induced mutations compared to the white locus (region 3C2). It is possible that, at the ends of Drosophila melanogaster chromosomes, transposons are more active than retrotransposons.  相似文献   

11.
12.
The P transposable element invaded the Drosophila melanogaster genome in the middle of the twentieth century, probably from D. willistoni in the Caribbean or southeastern North America. P elements then spread rapidly and became ubiquitous worldwide in wild populations of D. melanogaster by 1980. To study the dynamics and long-term fate of transposable genetic elements, we examined the molecular profile of genomic P elements and the phenotype in the P-M system of the current North American natural populations collected in 2001-2003. We found that full-size P and KP elements were the two major size classes of P elements present in the genomes of all populations ("FP + KP predominance") and that the P-related phenotypes had largely not changed since the 1980s. Both FP + KP predominance and phenotypic stability were also seen in other populations from other continents. As North American populations did not show many KP elements in earlier samples, we hypothesize that KP elements have spread and multiplied in the last 20 years in North America. We suggest that this may be due to a transpositional advantage of KP elements, rather than to a role in P-element regulation.  相似文献   

13.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Chen X  Li Y  Huang J  Cao D  Yang G  Liu W  Lu H  Guo A 《Cell and tissue research》2007,329(1):169-178
The microtubule-binding protein tau has been investigated for its contribution to various neurodegenerative disorders. However, the findings from transgenic studies, using the same tau transgene, vary widely among different laboratories. Here, we have investigated the potential mechanisms underlying tauopathies by comparing Drosophila (d-tau) and human (h-tau) tau in a Drosophila model. Overexpression of a single copy of either tau isoform in the retina results in a similar rough eye phenotype. However, co-expression of Par-1 with d-tau leads to lethality, whereas co-expression of Par-1 with h-tau has little effect on the rough eye phenotype. We have found analogous results by comparing larval proteomes. Through genetic screening and proteomic analysis, we have identified some important potential modifiers and tau-associated proteins. These results suggest that the two tau genes differ significantly. This comparison between species-specific isoforms may help to clarify whether the homologous tau genes are conserved. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This study was supported by the National Science Foundation of China (30270341; 30630028), the Multidisciplinary Program (Brain and Mind) of the Chinese Academy of Sciences, the Major State Basic Research Program (“973 program”; G2000077800; G2006CB806600; 2006CB911003), the Precedent Project of Important Intersectional Disciplines in the Knowledge Innovation Engineering of the Chinese Academy of Sciences (KJCX1-09-03).  相似文献   

15.
Extensive research has been carried out to understand how circadian clocks regulate various physiological processes in organisms. The discovery of clock genes and the molecular clockwork has helped researchers to understand the possible role of these genes in regulating various metabolic processes. In Drosophila melanogaster, many studies have shown that the basic architecture of circadian clocks is multi-oscillatory. In nature, different neuronal subgroups in the brain of D. melanogaster have been demonstrated to control different circadian behavioural rhythms or different aspects of the same circadian rhythm. Among the circadian phenomena that have been studied so far in Drosophila, the egg-laying rhythm is unique, and relatively less explored. Unlike most other circadian rhythms, the egg-laying rhythm is rhythmic under constant light conditions, and the endogenous or free-running period of the rhythm is greater than those of most other rhythms. Although the clock genes and neurons required for the persistence of adult emergence and activity/rest rhythms have been studied extensively, those underlying the circadian egg-laying rhythm still remain largely unknown. In this review, we discuss our current understanding of the circadian egg-laying rhythm in D. melanogaster, and the possible molecular and physiological mechanisms that control the rhythmic output of the egg-laying process.  相似文献   

16.
Sex-determining cascades are supposed to have evolved in a retrograde manner from bottom to top. Wilkins 1995 hypothesis finds support from our comparative studies in Drosophila melanogaster and Musca domestica, two dipteran species that separated some 120 million years ago. The sex-determining cascades in these flies differ at the level of the primary sex-determining signal and their targets, Sxl in Drosophila and F in Musca. Here we present evidence that they converge at the level of the terminal regulator, doublesex (dsx), which conveys the selected sexual fate to the differentiation genes. The dsx homologue in Musca, Md-dsx, encodes male-specific (MdDSXM) and female-specific (MdDSXF) protein variants which correspond in structure to those in Drosophila. Sex-specific regulation of Md-dsx is controlled by the switch gene F via a splicing mechanism that is similar but in some relevant aspects different from that in Drosophila. MdDSXF expression can activate the vitellogenin genes in Drosophila and Musca males, and MdDSXM expression in Drosophila females can cause male-like pigmentation of posterior tergites, suggesting that these Musca dsx variants are conserved not only in structure but also in function. Furthermore, downregulation of Md-dsx activity in Musca by injecting dsRNA into embryos leads to intersexual differentiation of the gonads. These results strongly support a role of Md-dsx as the final regulatory gene in the sex-determining hierarchy of the housefly.Edited by D. Tautz  相似文献   

17.
Flies from two populations of the Chilean endemic neotropical species Drosophila pavani and two populations of its sibling species Drosophila gaucha were crossed reciprocally to obtain intra- and interspecific hybrids. The developmental pathways of locomotor activity and feeding rate were analysed for eleven of twelve possible genotype groups. The hybrids showed reduced fitness indicated by a decrease in the measured traits. Hybrid disadvantage was strongest in interspecific hybrids, especially with respect to feeding behaviour. This evidence supports the contention that D. pavani and D. gaucha have evolved different coadapted gene pools controlling the developmental pathways for behavioural traits expressed during larval foraging; but genetic divergence affecting these behaviours has also taken place between locally adapted populations within each species.  相似文献   

18.
Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis.  相似文献   

19.
One of the Drosophila montana hsp70 genes was cloned and sequenced. Its 3′-flanking sequence proved to harbor a fragment of the SGM mobile element. The element was also found in the hsp70 3′-flanking region of and other species of the species group. A reorganization of the cluster with the involvement of full-length SGM was found in a strain. It was assumed that the presence of SGM in the cluster is conserved among species of the group and that SGM played a role in evolutionarily rearrangements of the cluster.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号