首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
smg p25A/rab3A p25 is a member of the small GTP-binding protein superfamily which is implicated in intracellular vesicle transport. smg p25A has a cDNA-predicted C-terminal structure of Cys-Ala-Cys. The protein purified from bovine brain membranes is geranylgeranylated at both the two cysteine residues and carboxyl-methylated at the C-terminal cysteine residue. Two types of prenyltransferase for small GTP-binding proteins have thus far been reported: ras p21 farnesyltransferase (ras p21 FT) and rhoA p21 geranylgeranyltransferase (rhoA p21 GGT). Neither of them geranylgeranylated smg p25A having a C-terminal Cys-Ala-Cys structure. In this paper, a smg p25A GGT was partially purified from bovine brain cytosol and separated from the ras p21 FT and rhoA p21 GGT by column chromatographies. smg p25A GGT transferred the geranylgeranyl moiety from geranylgeranyl pyrophosphate to both the two cysteine residues in the C-terminal Cys-Ala-Cys structure of smg p25A. smg p25A GGT did not use farnesyl pyrophosphate as a substrate and was also inactive on c-Ha-ras p21 and rhoA p21 with either farnesyl pyrophosphate or geranylgeranyl pyrophosphate as a substrate. These results indicate that there are at least three types of prenyltransferase for small GTP-binding proteins in mammalian tissues.  相似文献   

2.
smg p21B, a member of the ras p21-like small GTP-binding protein superfamily, undergoes post-translational modifications, which are geranylgeranylation of the cysteine residue in the C-terminal region followed by removal of the three C-terminal amino acids (QLL) and the subsequent carboxyl methylation of the exposed prenylated cysteine residue. smg p21B has a polybasic region upstream of the prenylated cysteine residue. We have previously proposed that these C-terminal structures of smg p21B are essential for the action of its stimulatory GDP/GTP exchange protein, named GDP dissociation stimulator (GDS). We studied here which structure of the C-terminal region of smg p21B is important for its interaction with smg p21 GDS. For this purpose, we synthesized a peptide according to the C-terminal structure of smg p21B, which was PGKARKKSSC-geranylgeranyl-carboxyl methyl, and its variously modified peptides and examined their ability to interact with smg p21 GDS and to interfere with the smg p21 GDS action to stimulate the GDP/GTP exchange reaction of smg p21B. The results indicate that the phosphorylated form of PGKARKKSSC-geranylgeranyl stoichiometrically interacts with smg p21 GDS, that the presence of the geranylgeranyl moiety is essential for, but not sufficient for, the smg p21 GDS action, and that the presence of the methyl moiety, removal of the three C-terminal amino acids, and the presence of the polybasic amino acids also affect the smg p21 GDS action. It is likely that all the steps of the post-translational processing and presence of the polybasic region in the C-terminal region of smg p21B are related to its interaction with smg p21 GDS.  相似文献   

3.
The protein products of yeast and mammalian ras genes are posttranslationally modified to give mature forms that are localized to the inner surface of the plasma membrane. We have previously demonstrated that the mature form of the Saccharomyces cerevisiae RAS2 gene product is methyl esterified at a modified C-terminal cysteine residue. Here we provide evidence that this residue is an S-farnesylcysteine alpha-carboxyl methyl ester. This result establishes common posttranslational modifications for RAS proteins and fungal sex factors. These polypeptides exhibit sequence similarities at their C-termini that appear to be the critical recognition elements for a common set of modification enzymes. In mammalian cells, proteins with analogous C-terminal sequences appear to be prenylated and carboxyl methylated by a similar mechanism.  相似文献   

4.
K Vorburger  G T Kitten    E A Nigg 《The EMBO journal》1989,8(13):4007-4013
The C-terminus of nuclear lamins (CXXM) resembles a C-terminal motif (the CAAX box) of fungal mating factors and ras-related proteins. The CAAX box is subject to different types of post-translational modifications, including proteolytic processing, isoprenylation and carboxyl methylation. By peptide mapping we show that both chicken lamins A and B2 are processed proteolytically in vivo. However, whereas the entire CXXM motif is cleaved from lamin A, at most three C-terminal amino acids are removed from lamin B2. Following translation of cDNA-derived RNAs in reticulocyte lysates, lamin proteins specifically incorporate a derivative of [14C]mevalonic acid (MV), i.e. the precursor of a putative isoprenoid modification. Remarkably, no MV is incorporated into lamin B2 translated from a mutant cDNA encoding alanine instead of cysteine in the C-terminal CXXM motif. These results implicate this particular cysteine residue as the target for modification of lamin proteins by an isoprenoid MV derivative, and they indicate that isoprenylation is amenable to studies in cell-free systems. Moreover, our observations suggest that C-terminal processing of newly synthesized nuclear lamins is a multi-step process highly reminiscent of the pathway elaborated recently for ras-related proteins.  相似文献   

5.
Posttranslational prenylation of proteins synthesized as soluble precursors enhances their hydrophobicity and enables them to bind biological membranes. These modifications consist in the attachment of a C15 farnesyl or a C20 geranylgeranyl moiety to the cysteine residue(s) of proteins bearing CAAX, CC or CXC C-terminal sequences (where C = cysteine, A = aliphatic residue and X = any amino-acid), such as proteins of the ras superfamily, gamma subunits of heterotrimetric G proteins, lamin B as well as yeast mating factor a. A farnesyl transferase (FTase) and two distinct geranylgeranyl transferases (GGTases I and II) have been recently identified. FTase and GGTase I modify proteins containing a C-terminal CAAX motif; such a sequence is necessary and sufficient for recognition by the enzymes. The nature of the fourth residue determines the nature of the modification: when X is a serine, a methionine or a phenylalanine, the protein is farnesylated, whereas the presence of a leucine residue results in the attachment of a geranylgeranyl group. Both these enzymes are alpha beta heterodimers; their purification, molecular cloning of their coding sequences as well as mutational studies in yeast have shown that they share a common alpha subunit, and that their beta subunits exhibit a significant level of sequence similarity. GGTase II modifies ras-related proteins exhibiting CC and CXC C-terminal sequences; the enzyme as well as its recognition motif are yet largely uncharacterized.  相似文献   

6.
C Volker  P Lane  C Kwee  M Johnson  J Stock 《FEBS letters》1991,295(1-3):189-194
Members of the Ras superfamily of small GTP-binding proteins, gamma-subunits of heterotrimeric G proteins and nuclear lamin B are subject to a series of post-translational modifications that produce prenylcysteine methylester groups at their carboxyl termini. The thioether-linked polyisoprenoid substituent can be either farnesyl (C15) or geranylgeranyl (C20). Small molecule prenylcysteine derivatives with either the C15 or C20 modification, such as N-acetyl-S-trans,trans-farnesyl-L-cysteine (AFC), S-trans,trans-farnesylthiopropionate (FTP), as well as the corresponding geranylgeranyl derivatives (AGGC and GGTP) are substrates for the carboxyl methyltransferase. Saccharomyces cerevisiae ste14 mutants that lack RAS and a-factor carboxyl methyltransferase activity are also unable to methylate farnesyl and geranylgeranylcysteine derivatives. Moreover, C20-substituted cysteine analogs directly compete for carboxyl methylation with the C15-substituted cysteine analogs and vice versa. Finally, AGGC is even more effective than AFC as an inhibitor of Ras carboxyl methylation, despite the fact that Ras is methylated at a farnesylcysteine rather than a geranylgeranylcysteine residue.  相似文献   

7.
Yeast and mammalian RAS gene products are GTP-binding proteins that are posttranslationally localized to the inner surface of the plasma membrane. This localization is accomplished by the addition of a lipid moiety to a conserved cysteine residue close to the carboxyl terminus. In a previous report we showed that the mammalia Ha-ras protein is also modified posttranslationally by methyl esterification. Here we show that the yeast RAS2 protein is posttranslationally modified by methyl esterification at or near the carboxyl terminus. We also present evidence indicating that the methyl ester is linked to the conserved cysteine residue, implying that RAS2 protein is cleaved to expose this cysteine as the carboxyl-terminal residue. This maturation pathway may be shared by a family of proteins that are initially synthesized as soluble proteins and must become membrane-localized to function.  相似文献   

8.
One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.  相似文献   

9.
rhoA p21, a ras p21-like small GTP-binding protein, has the same C-terminal consensus motif of Cys-A-A-X (A is an aliphatic amino acid and X is any amino acid) as ras p21s, which is posttranslationally processed. We here determine the posttranslationally processed C-terminal structure of the rhoA p21 purified from bovine aortic smooth muscle. Incubation of rhoA p21-expressing insect cells with exogenous [3H]mevalonolactone caused the labeling of rhoA p21, suggesting that rhoA p21 is prenylated. Consistently, Raney nickel treatment of rhoA p21 released a geranylgeranyl moiety as estimated by gas chromatography/mass spectrometry. No lipid moiety was released by KOH or NH2OH treatment. Extensive digestion of rhoA p21 with Achromobacter protease I yielded a C-terminal peptide, Ser-Gly-Cys190, that lacked the three C-terminal amino acids predicted from the cDNA but was geranylgeranylated and carboxyl methylated at the cysteine residue. Bovine brain cytosol geranylgeranylated the bacterial rhoA p21 having the three C-terminal amino acids predicted from the cDNA but not the protein lacking the three C-terminal amino acids. Bovine brain membranes methylated the synthetic C-terminal peptide with 10 amino acids of rhoA p21 which was geranylgeranylated at its C-terminal cysteine residue but not the peptide which was not geranylgeranylated. These results suggest that rhoA p21 is first geranylgeranylated followed by removal of the three C-terminal amino acids and the subsequent carboxyl methylation of the exposed cysteine residue.  相似文献   

10.
All ras proteins are polyisoprenylated but only some are palmitoylated   总被引:174,自引:0,他引:174  
J F Hancock  A I Magee  J E Childs  C J Marshall 《Cell》1989,57(7):1167-1177
The C-terminal CAAX motif of the yeast mating factors is modified by proteolysis to remove the three terminal amino acids (-AAX) leaving a C-terminal cysteine residue that is polyisoprenylated and carboxyl-methylated. Here we show that all ras proteins are polyisoprenylated on their C-terminal cysteine (Cys186). Mutational analysis shows palmitoylation does not take place on Cys186 as previously thought but on cysteine residues contained in the hypervariable domain of some ras proteins. The major expressed form of c-K-ras (exon 4B) does not have a cysteine residue immediately upstream of Cys186 and is not palmitoylated. Polyisoprenylated but nonpalmitoylated H-ras proteins are biologically active and associate weakly with cell membranes. Palmitoylation increases the avidity of this binding and enhances their transforming activity. Polyisoprenylation is essential for biological activity as inhibiting the biosynthesis of polyisoprenoids abolishes membrane association of p21ras.  相似文献   

11.
Sequence dependence of protein isoprenylation   总被引:38,自引:0,他引:38  
Several proteins have been shown to be post-translationally modified on a specific C-terminal cysteine residue by either of two isoprenoid biosynthetic pathway metabolites, farnesyl diphosphate or geranylgeranyl diphosphate. Three enzymes responsible for protein isoprenylation were resolved chromatographically from the cytosolic fraction of bovine brain: a farnesyl-protein transferase (FTase), which modified the cell-transforming Ras protein, and two geranyl-geranyl-protein transferases, one (GGTase-I) which modified a chimeric Ras having the C-terminal amino acid sequence of the gamma-6 subunit of heterotrimeric GTP-binding proteins, and the other (GGTase-II) which modified the Saccharomyces cerevisiae secretory GTPase protein YPT1. In a S. cerevisiae strain lacking FTase activity (ram1), both GGTases were detected at wild-type levels. In a ram2 S. cerevisiae strain devoid of FTase activity, GGTase-I activity was reduced by 67%, suggesting that GGTase-I and FTase activities derive from different enzymes but may share a common genetic feature. For the FTase and the GGTase-I activities, the C-terminal amino acid sequence of the protein substrate, the CAAX box, appeared to contain all the critical determinants for interaction with the transferase. In fact, tetrapeptides with amino acid sequences identical to the C-terminal sequences of the protein substrates for FTase or GGTase-I competed for protein isoprenylation by acting as alternative substrates. Changes in the CAAX amino acid sequence of protein substrates markedly altered their ability to serve as substrates for both FTase and GGTase-I. In addition, it appeared that FTase and GGTase-I had complementary affinities for CAAX protein substrates; that is, CAAX proteins that were good substrates for FTase were, in general, poor substrates for GGTase-I, and vice versa. In particular, a leucine residue at the C terminus influenced whether a CAAX protein was either farnesylated or geranylgeranylated preferentially. The YPT1 C terminus peptide, TGGGCC, did not compete or serve as a substrate for GGTase-II, indicating that the interaction between GGTase-II and YPT1 appeared to depend on more than the 6 C-terminal residues of the protein substrate sequence. These results identify three different isoprenyl-protein transferases that are each selective for their isoprenoid and protein substrates.  相似文献   

12.
SifA is a Salmonella effector protein that is required for maintenance of the vacuolar membrane that surrounds replicating bacteria. It associates with the Salmonella-containing vacuole but how it interacts with the membrane is unknown. Here we show by immunofluorescence, S100 fractionation and Triton X-114 partitioning that the membrane association and targeting properties of SifA are influenced by a motif encoded within the C-terminal six amino acids. This sequence shares homology with both CAAX and Rab geranylgeranyl transferase prenylation motifs. We characterized the post-translational processing of SifA and showed that the cysteine residue within the CAAX motif is modified by isoprenoid addition through the action of protein geranylgeranyl transferase I. SifA was additionally modified by S-acylation of an adjacent cysteine residue. Similar modifications to host cell proteins regulate numerous functions including protein targeting, membrane association, protein-protein interaction, and signal transduction. This is the only known example of a bacterial effector protein that is modified both by mammalian cell S-acylation and prenylation machinery.  相似文献   

13.
The pK(a) values of the CXXC active-site cysteine residues play a critical role in determining the physiological function of the thioredoxin superfamily. To act as an efficient thiol-disulphide oxidant the thiolate state of the N-terminal cysteine must be stabilised and the thiolate state of the C-terminal cysteine residue destabilised. While increasing the pK(a) value of the C-terminal cysteine residue promotes oxidation of substrates, it has an inhibitory effect on the reoxidation of the enzyme, which is promoted by the formation of a thiolate at this position. Since reoxidation is essential to complete the catalytic cycle, the differential requirement for a high and a low pK(a) value for the C-terminal cysteine residue for different steps in the reaction presents us with a paradox. Here, we report the identification of a conserved arginine residue, located in the loop between beta5 and alpha4 of the catalytic domains of the human protein disulphide isomerase (PDI) family, which is critical for the catalytic function of PDI, ERp57, ERp72 and P5, specifically for reoxidation. An examination of the published NMR structure for the a domain of PDI combined with molecular dynamic studies suggest that the side-chain of this arginine residue moves into and out of the active-site locale and that this has a very marked effect on the pK(a) value of the active-site cysteine residues. This intra-domain motion resolves the apparent dichotomy of the pK(a) requirements for the C-terminal active-site cysteine.  相似文献   

14.
Posttranslational modification of proteins by isoprenoids in mammalian cells   总被引:27,自引:0,他引:27  
W A Maltese 《FASEB journal》1990,4(15):3319-3328
Isoprenylation is a posttranslational modification that involves the formation of thioether bonds between cysteine and isoprenyl groups derived from pyrophosphate intermediates of the cholesterol biosynthetic pathway. Numerous isoprenylated proteins have been detected in mammalian cells. Those identified include K-, N-, and H-p21ras, ras-related GTP-binding proteins such as G25K (Gp), nuclear lamin B and prelamin A, and the gamma subunits of heterotrimeric G proteins. The modified cysteine is located in the fourth position from the carboxyl terminus in every protein where this has been studied. For p21ras, the last three amino acids are subsequently removed and the exposed cysteine is carboxylmethylated. Similar processing events may occur in lamin B and G protein gamma subunits, but the proteolytic cleavage in prelamin A occurs upstream from the modified cysteine. Lamin B and p21ras are modified by C15 farnesyl groups, whereas other proteins such as the G protein gamma subunits are modified by C20 geranylgeranyl chains. Separate enzymes may catalyze these modifications. The structural features that govern the ability of particular proteins to serve as substrates for isoprenylation by C15 or C20 groups are not completely defined, but studies of the p21ras modification using purified farnesyl:protein transferase suggest that the sequence of the carboxyl-terminal tetrapeptide is important. Isoprenylation plays a critical role in promoting the association of p21ras and the lamins with the cell membrane and nuclear envelope, respectively. Future studies of the role of isoprenylation in the localization and function of ras-related GTP-binding proteins and signal-transducing G proteins should provide valuable new insight into the link between isoprenoid biosynthesis and cell growth.  相似文献   

15.
16.
MAB007, an IgG1 monoclonal antibody, is unique because of the presence of a free cysteine residue in the Fab region at position 104 on the heavy chain in the CDR3 region. Mass spectrometric analysis of intact MAB007 showed multiple peaks varying in mass by 120-140 Da that cannot be fully attributed to glycosylation isoforms typically present in IgG molecules. Limited proteolysis of MAB007 with Lys-C led to a single cleavage at the C-terminus of a lysine residue in the hinge region of the heavy chain at position 222, generating free Fab and Fc fragments. Reversed-phase liquid chromatography/mass spectrometry analysis of the Fab and Fc fragments revealed several modifications. The Fab fraction showed cysteinylation of a free cysteine in the CDR3 region resulting in a mass shift of 119 Da. Using limited proteolysis, we also identified modifications resulting in a mass increase of 127 Da in the Fc region, corresponding to C-terminal lysine variants in the heavy chain. Other modifications, such as oxidation (+16 Da) and succinimide formation (-17 Da), were also detected in the Fab fragment. The cysteinylation observed after limited proteolysis was confirmed by peptide mapping coupled with tandem mass spectrometry analysis.  相似文献   

17.
A heterotrimeric G-protein in vertebrate photoreceptor cells is called transducin (T alpha beta gamma), whose gamma-subunit is a mixture of two components, T gamma-1 and T gamma-2. T gamma-2 is S-farnesylated and partly carboxyl methylated at the C-terminal cysteine residue, whereas T gamma-1 lacks the modified cysteine residue. To elucidate the physiological significance of the double modifications in T gamma, we established a simple chromatographic procedure to isolate T gamma-1, methylated T gamma-2 and non-methylated T gamma-2 on a reversed phase column. Taking advantage of the high and reproducible yield of T gamma from the column, we analyzed the composition of T gamma subspecies in the T alpha-T beta gamma complex which did not bind with transducin-depleted rod outer segment membranes containing metarhodopsin II. The binding of T alpha-T beta gamma with the membranes was shown to require the S-farnesylated cysteine residue of T gamma, whose methylation further enhanced the binding. This synergistic effect was not evident when T alpha was either absent or converted to the GTP-bound form which is known to dissociate from T beta gamma. Thus we concluded that a formation of the ternary complex, T alpha-T beta gamma-metarhodopsin II, is enhanced by the farnesylation and methylation of T gamma. This suggests that the double modifications provide most efficient signal transduction in photoreceptor cells.  相似文献   

18.
Several proteins in mammalian cells are modified post-translationally by the isoprenoid, farnesol. Incubation of cultured cells with [3H]mevalonate, an isoprenoid precursor, results in the labeling of multiple polypeptides, the most prominent of which migrate in the range of 21-26 kDa on sodium dodecyl sulfate-polyacrylamide gels. In Rat-6 fibroblasts transformed by H-ras, one of the farnesylated proteins was identified as p21ras by two-dimensional immunoblotting. However, this protein accounted for only a small proportion of the [3H]mevalonate-derived radioactivity incorporated into 21-26-kDa proteins. Murine erythroleukemia cells, which did not express immunodetectable quantities of p21ras, contained several 21-26-kDa farnesylated proteins distributed in both the cytosolic and particulate fractions. At least eight of these proteins were capable of binding [alpha-32P]GTP on nitrocellulose membranes. Pulse-chase studies showed that the isoprenoid modification did not necessarily result in the translocation of the cytosolic proteins to the cell membrane. A prominent group of carboxyl-methylated proteins in murine erythroleukemia cells overlapped with the 21-26-kDa farnesylated proteins on one-dimensional sodium dodecyl sulfate gels. Methylation of this group of proteins was selectively abolished when cells were treated with lovastatin, an inhibitor of isoprenoid synthesis. Addition of exogenous mevalonate to the lovastatin-treated cells fully restored carboxyl methylation. These studies suggest that the 21-26-kDa farnesylated proteins in mammalian cells are members of a recently discovered family of low molecular mass GTP-binding proteins which, although ras-related, appear to be distinct structurally and possibly functionally from the products of the ras genes. The observed isoprenoid-dependent carboxyl methylation of a group of 21-26-kDa proteins suggests that the low molecular mass GTP-binding proteins may undergo a series of post-translational C-terminal cysteine modifications (i.e. farnesylation, carboxyl methylation) analogous to those recently elucidated for p21ras.  相似文献   

19.
20.
Modrfication of proteins at C-terminal cysteine residue(s) by the isoprenoids farnesyl (C15) and geranylgeranyl (C20) is essential for the biological function of a number of eukaryotic proteins including fungal mating factors and the small, GTP-binding proteins of the Ras superfamily. Three distinct enzymes, conserved between yeast and mammals, have been identified that prenylate proteins: farnesyl protein transferase, geranylgeranyl protein transferase type I and geranylgeranyl protein transferase type II. Each prenyl protein transferase has its own protein substrate specificity. Much has been learned about the biology, genetics and biochemistry of protein prenylation and prenyl protein transferases through studies of eukaryotic microorganisms, particularly Saccharo-myces cerevisiae. The functional Importance of protein prenylation was first demonstrated with fungal mating factors. The initial genetic analysis of prenyl protein transferases was in S. cerewisiae with the isolation and subsequent characterization of mutations in the RAM1, RAM2, CDC43 and BET2 genes, each of which encodes a prenyl protein transferase subunit. We review here these and other studies on protein prenylation in eukaryotic microbes and how they relate to and have contributed to our knowledge about protein prenylation in all eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号