首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P Jezek 《FEBS letters》1987,211(1):89-93
Mersalyl inhibits H+ transport via the uncoupling protein (UP) in brown adipose tissue (BAT) mitochondria estimated as swelling in potassium acetate (Ki 67 microM) or as valinomycin-induced H+ extrusion in K2SO4 (Ki 55 microM) and KCl. The swelling in KCl is depressed only slightly. Some other SH-reagents (p-hydroxymercuribenzoate, 5,5'-dithiobis(2-nitrobenzoate) and thiolyte DB), but not hydrophobic reagents (N-ethylmaleimide and eosin-5-maleimide), exhibit analogous inhibition. Thus an essential SH-group localized at the water-accessible cytosolic surface of UP was found to be involved in H+ transport via UP but not in Cl- transport.  相似文献   

2.
Volume-regulating behavior of human platelets   总被引:3,自引:0,他引:3  
Human platelets exposed to hypotonic media undergo an initial swelling followed by shrinking (regulatory volume decrease [RVD]). If the RVD is blocked, the degree of swelling is in accord with osmotic behavior. The cells could swell at least threefold without significant lysis. Two methods were used to follow the volume changes, electronic sizing and turbidimetry. Changes in shape produced only limited contribution to the measurements. The RVD was very rapid, essentially complete in 2 to 8 minutes, with a rate proportional to the degree of initial cell swelling. RVD involved a loss of KCl via volume-activated conductive permeability pathways for K+ and anions, presumably Cl-. In media containing greater than 50 mM KCl, the shrinking was inhibited and with higher concentrations was reversed (secondary swelling), suggesting that it is driven by the net gradient of K+ plus Cl-. The K+ pathway was specific for Rb+ and K+ compared to Li+ and Na+. The Cl- pathway accepted NO-3 and SCN- but not citrate or SO4(2-). In isotonic medium, the permeability of platelets to Cl- appeared to be low compared to that of K+. After hypotonic swelling both permeabilities were increased, but the Cl- permeability exceeded that of K+. The Cl- conductive pathway remained open as long as the cells were swollen. RVD was incomplete unless amiloride, an inhibitor of Na+/H+ exchange, was present or unless Na+ was replaced by an impermeant cation. In addition, acidification of the cytoplasm occurred upon cell swelling. This reduction in pHi appeared to activate Na+/H+ exchange, with a resultant uptake of Na+ and reduction in the rate and amount of shrinking. Like other cells, platelets responded to hypertonic shrinking with activation of Na+/H+ exchange, but regulatory volume increase was not detectable.  相似文献   

3.
The role of the Na+/K+/Cl- cotransporter in the regulation of the volume of C6 astrocytoma cells was analyzed using isotopic fluxes and cell cytometry measurements of the cell volume. The system was inhibited by 'loop diuretics' with the following order of potency: benzmetanide greater than bumetanide greater than piretanide greater than furosemide. Under physiological conditions of osmolarity of the incubation media, equal rates of bumetanide-sensitive inward and outward K+ fluxes were observed. Blockade of the Na+/K+/Cl- cotransporter with bumetanide did not lead to a modification in the mean cell volume. When C6 cells were incubated in an hyperosmotic solution, a cell shrinkage was observed. It was accompanied by a twofold increase in the activity of the Na+/K+/Cl- cotransport, which then catalyzed the net influx of K+. In spite of this increased activity, no cell swelling could be measured. Incubation of the cells in an iso-osmotic medium deprived of either Na+, K+ or Cl- also produced cell shrinkage. Large activations (up to tenfold) of the Na+/K+/Cl- cotransport together with a cell swelling back to the normal volume were observed upon returning ion-deprived C6 cells to a physiological solution. This cell swelling was completely prevented in the presence of bumetanide. It is concluded that the Na+/K+/Cl- cotransport system is one of the transport systems involved in volume regulation of glial cells. The system can either be physiologically quiescent or active depending on the conditions used. A distinct volume regulating mechanism is the Na+/H+ exchange system.  相似文献   

4.
A Na+/K+/Cl- cotransport pathway has been examined in the HT29 human colonic adenocarcinoma cell line using 86Rb as the K congener. Ouabain-resistant bumetanide-sensitive (OR-BS) K+ influx in attached HT29 cells was 17.9 +/- 0.9 nmol/min per mg protein at 25 degrees C. The identity of this pathway as a Na+/K+/Cl- cotransporter has been deduced from the following findings: (a) OR-BS K+ influx ceased if the external Cl- (Cl-o) was replaced by NO3- or the external Na+ (Na+o) by choline; (b) neither OR-BS 24Na+ nor 36Cl- influx was detectable in the absence of external K+ (K+o); and (c) concomitant measurements of 86Rb+, 22Na+, and 36Cl- influx indicated that the stoichiometry of the cotransport system approached a ratio of 1N+:1K+:2Cl-. In addition, OR-BS K+ influx was exquisitely sensitive to cellular ATP levels. Depletion of the normal ATP content of 35-40 nmol/mg protein to 10-15 nmol/mg protein, a concentration at which the ouabain-sensitive K+ influx was unaffected, completely abolished K+ cotransport. OR-BS K+ influx was slightly reduced by the divalent cations Ca2+, Ba2+, Mg2+ and Mn2+. Although changes in cell volume, whether shrinking or swelling, did not influence OR-BS K+ influx, ouabain-sensitive K+ influx was activated by cell swelling. As in T84 cells, we found that the OR-BS K+ influx in HT29 cells was stimulated by exogenous cyclic AMP analogues and by augmented cyclic AMP content in response to vasoactive intestinal peptide, forskolin, norepinephrine and forskolin or prostaglandin E1.  相似文献   

5.
The dependence of the rate of valinomycin-induced Na+/H+ erythrocyte metabolism on the extracellular K+ concentration has been investigated. It has been established that Na+/H+ metabolism in the erythrocytes of spontaneously hypertensive rats (SHR) is induced at higher [K+]o concentrations than in normotensive controls (WKY). The distinctions in the maximum rate of Na+/H+ metabolism were revealed only in SHR in pre-hypertensive stage (it was 20% lower than in WKY). It is suggested that the distinctions are determined by peculiarities of membrane cytoskeleton formation. The conclusion was confirmed in experiments on erythrocyte stability to orthovanadate effect.  相似文献   

6.
This study examines the effect of heat-induced cytoskeleton transitions and phosphoprotein phosphatase inhibitors on the activity of shrinkage-induced Na+, K+, 2Cl- cotransport and Na+/H+ exchange in rat erythrocytes and swelling-induced K+, Cl- cotransport in human and rat blood cells. Preincubation of human and rat erythrocytes at 49 degrees C drastically activated K+, Cl- cotransport and completely (rat) or partly (human) abolished its volume-dependent regulation. The same procedure did not affect basal activity of Na+, K+, 2Cl- cotransport but completely abolished its activation by shrinkage thus suggesting the involvement of a thermosensitive element of cytoskeleton network in the volume-dependent regulation of cotransporters. Both the shrinkage- and electrochemical proton gradient-induced Na+/H+ exchange was inhibited by the heat treatment to the same extent (50-70%), thus indicating the different signaling pathways involved in the activation of Na+, K+, 2Cl- cotransport and Na+/H+ exchange by cell shrinkage. This suggestion is in accordance with data on the different kinetics of volume-dependent activation and inactivation of these carriers as well as on their sensitivity to medium osmolality. Both swelling- and heat-induced increments of K+, Cl- cotransport activity were diminished by inhibitors of phosphoprotein phosphatases (okadaic acid and calyculin). In rat erythrocytes these compounds potentiate shrinkage-induced Na+/H+ exchange. On the contrary, neither basal nor shrinkage-induced Na+, K+, 2Cl- cotransport was affected by these compounds. Our results indicate a key role of cytoskeleton network in volume-dependent activation of K+, Cl- and Na+, K+, 2Cl- cotransport and the involvement of protein phosphorylation-dephosphorylation cycle in regulation of the activity of K+, Cl- cotransport and Na+/H+ exchange.  相似文献   

7.
The influence of hypotonic swelling and hypertonic shrinking on cytosolic pH in synaptosomes was investigated. It was shown that decreasing the osmolarity of incubation medium to 230 mOsm leads to alkalization and increasing the osmolarity of incubation medium to 810 mOsm leads to acidification. Alkalization was inhibited by amiloride, indicating the involvement of the Na+/H+ exchanger. The acidification of cytosol upon hypertonic shrinking was insensitive, to amiloride and the inhibitor of Na+, K+, Cl- cotransport bumetanide. Thus, the Na+/H+ exchange in synaptosomes is activated by hypotonic swelling but not hypertonic shrinking, in contrast with erythrocytes and lymphocytes, which have been investigated earlier.  相似文献   

8.
Volume-induced increase of anion permeability in human lymphocytes   总被引:14,自引:7,他引:7       下载免费PDF全文
Peripheral blood mononuclear cells (PBM) readjust their volumes after swelling in hypotonic media. This regulatory volume decrease (RVD) is associated with a loss of cellular K+ and is thought to be promoted by an increased permeability to this ion. In contrast, no change in volume was observed when K+ permeability of PBM in isotonic media was increased to comparable or higher levels using valinomycin. Moreover, valinomycin-induced 86Rb+ loss in K+-free medium was considerably slower than in K+-rich medium. These results suggest that anion conductance limits net salt loss in isotonic media. Direct measurements of relative conductance confirmed that in volume-static cells, anion conductance is lower than that of K+. In volume-regulating cells depolarization occurred presumably as a result of increased anion conductance. Accordingly, the efflux of 36Cl from PBM was markedly increased by hypotonic stress. Since both membrane potential and intracellular 36Cl concentration are reduced in hypotonically swollen cells, the increased efflux is probably due to a change in Cl- permeability. Anions and cations seem to move independently through the volume-induced pathways: the initial rate of 86Rb uptake in swollen cells was not affected by replacement of external Cl- by SO=4; conversely, 36Cl fluxes were unaffected by substitution of K+ by Na+. The data indicate that anion conductance is rate-determining in salt and water loss from PBM. An increase in anion conductance is suggested to be the critical step of RVD of human PBM.  相似文献   

9.
Increased anion permeability during volume regulation in human lymphocytes   总被引:1,自引:0,他引:1  
Peripheral blood lymphocytes (p.b.ls) readjust their volumes after swelling in hypotonic media. An essential component of the regulatory response is an increase in K+ and Cl- permeability. No evidence was found for a tightly coupled co-transport of K+ and Cl-. The flux of either ion proceeds normally in the virtual absence of the transported counterion. Furthermore, alterations in membrane potential recorded during the phase of volume readjustment can be qualitatively accounted for by an increase in Cl- conductance. In tonsillar lymphocytes, a failure of the K+-permeability is nevertheless increased upon swelling. This further suggests that K+ and Cl- are transported during volume regulation through independent pathways. Cytoplasmic free Ca2+ appears to be involved in regulatory volume decrease. K+ and Cl-. Moreover, swelling and shrinking can be induced in isotonic K+-rich and K+-free media, respectively, by the Ca2+ ionophore. The ion flux and volume changes produced by either swelling or internal Ca2+ can be inhibited by similar concentrations of quinine and phenothiazines. The inhibitory activity of the latter drugs, which are powerful antagonists of calmodulin, suggests the participation of this Ca2+-regulator protein in volume regulation.  相似文献   

10.
The interference of glibenclamide, an antidiabetic sulfonylurea, with mitochondrial bioenergetics was assessed on mitochondrial ion fluxes (H+, K+, and Cl-) by passive osmotic swelling of rat liver mitochondria in K-acetate, KNO3, and KCl media, by O2 consumption, and by mitochondrial transmembrane potential (Deltapsi). Glibenclamide did not permeabilize the inner mitochondrial membrane to H+, but induced permeabilization to Cl- by opening the inner mitochondrial anion channel (IMAC). Cl- influx induced by glibenclamide facilitates K+ entry into mitochondria, thus promoting a net Cl-/K+ cotransport, Deltapsi dissipation, and stimulation of state 4 respiration rate. It was concluded that glibenclamide interferes with mitochondrial bioenergetics of rat liver by permeabilizing the inner mitochondrial membrane to Cl- and promoting a net Cl-/K+ cotransport inside mitochondria, without significant changes on membrane permeabilization to H+.  相似文献   

11.
Proton pathways in rat renal brush-border and basolateral membranes   总被引:7,自引:0,他引:7  
The quenching of acridine orange fluorescence was used to monitor the formation and dissipation of pH gradients in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. The fluorescence changes of acridine orange were shown to be sensitive exclusively to transmembrane delta pH and not to membrane potential difference. In brush-border membrane vesicles, an Na+ (Li+)-H+ exchange was confirmed. At physiological Na+ concentrations, 40-70% of Na+-H+ exchange was mediated by the electroneutral Na+-H+ antiporter; the remainder consisted of Na+ and H+ movements through parallel conductive pathways. Both modes of Na+-H+ exchange were saturable, with half-maximal rates at about 13 and 24 mM Na+, respectively. Besides a Na+ gradient, a K+ gradient was also able to produce an intravesicular acidification, demonstrating conductance pathways for H+ and K+ in brush-border membranes. Experiments with Cl- or SO2-4 gradients failed to demonstrate measurable Cl--OH- or SO2-4-OH- exchange by an electroneutral antiporter in brush-border membrane vesicles; only Cl- conductance was found. In basolateral membrane vesicles, neither Na+(Li+)-H+ exchange nor Na+ or K+ conductances were found. However, in the presence of valinomycin-induced K+ diffusion potential, H+ conductance of basolateral membranes was demonstrated, which was unaffected by ethoxzolamide and 4,4'-diisothiocyanostilbene-2,2-disulfonic acid. A Cl- conductance of the membranes was also found, but antiporter-mediated electroneutral Cl--OH- or SO2-4-OH- exchange could not be detected by the dye method. The restriction of the electroneutral Na+-H+ exchanger to the luminal membrane can explain net secretion of protons in the mammalian proximal tubule which leads to the reabsorption of bicarbonate.  相似文献   

12.
U937 cell possess two mechanisms that allow them to recover from an intracellular acidification. The first mechanism is the amiloride-sensitive Na+/H+ exchange system. The second system involves bicarbonate ions. Its properties have been defined from intracellular pH (pHi) recovery experiments, 22Na+ uptake experiments, 36Cl- influx and efflux experiments. Bicarbonate induced pHi recovery of the cells after a cellular acidification to pHi = 6.3 provided that Na+ ions were present in the assay medium. Li+ or K+ could not substitute for Na+. The system seemed to be electroneutral. 22Na+ uptake experiments showed the presence of a bicarbonate-stimulated uptake pathway for Na+ which was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate. The bicarbonate-dependent 22Na+ uptake component was reduced by depleting cells of their internal Cl- and increased by removal of external Cl-. 36Cl- efflux experiments showed that the presence of both external Na+ and bicarbonate stimulated the efflux of 36Cl- at a cell pHi of 6.3. Finally a 36Cl- uptake pathway was documented. It was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate (K0.5 = 10 microM) and bicarbonate (K0.5 = 2 mM). These results are consistent with the presence in U937 cells of a coupled exchange of Na+ and bicarbonate against chloride. It operates to raise the intracellular pH. Its pHi and external Na+ dependences were defined. No evidence for a Na+-independent Cl-/HCO3- exchange system could be found. The Na+-dependent Cl-/HCO3- exchange system was relatively insensitive to (aryloxy)alkanoic acids which are potent inhibitors of bicarbonate-induced swelling of astroglia and of the Li(Na)CO3-/Cl- exchange system of human erythrocytes. It is concluded that different anionic exchangers exist in different cell types that can be distinguished both by their biochemical properties and by their pharmacological properties.  相似文献   

13.
The technique for the simultaneous recording of cell volume changes and pHi in single cells was used to study the role of HCO3- in regulatory volume decrease (RVD) by the osteosarcoma cells UMR-106-01. In the presence of HCO3-, steady state pHi is regulated by Na+/H+ exchange, Na+ (HCO3-)3 cotransport and Na(+)-independent Cl-/HCO3- exchange. Following swelling in hypotonic medium, pHi was reduced from 7.16 +/- 0.02 to 6.48 +/- 0.02 within 3.4 +/- 0.28 min. During this period of time, the cells performed RVD until cell volume was decreased by 31 +/- 5% beyond that of control cells (RVD overshoot). Subsequently, while the cells were still in hypotonic medium, pHi slowly increased from 6.48 +/- 0.02 to 6.75 +/- 0.02. This increase in pHi coincided with an increase in cell volume back to normal (recovery from RVD overshoot or hypotonic regulatory volume increase (RVI)). The same profound changes in cell volume and pHi after cell swelling were observed in the complete absence of Cl- or Na+, providing HCO3- was present. On the other hand, depolarizing the cells by increasing external K+ or by inhibition of K+ channels with quinidine, Ba2+ or tetraethylammonium prevented the changes in pHi and RVD. These findings suggest that in the presence of HCO3-, RVD in UMR-106-01 cells is largely mediated by the conductive efflux of K+ and HCO3-. Removal of external Na+ but not Cl- prevented the hypotonic RVI that occurred after the overshoot in RVD. Amiloride had no effect, whereas pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) strongly inhibited hypotonic RVI. Thus, hypotonic RVI is mediated by a Na+(out)-dependent, Cl(-)-independent and DIDS-inhibitable mechanism, which is indicative of a Na+(HCO3-)3 cotransporter. This is the first evidence for the involvement of this transporter in cell volume regulation. The present results also stress the power of the new technique used in delineating complicated cell volume regulatory mechanisms in attached single cells.  相似文献   

14.
D McLaggan  M Keyhan    A Matin 《Journal of bacteriology》1990,172(3):1485-1490
The protonophore-mediated collapse of the large delta pH that acidophiles maintain across their cytoplasmic membranes was augmented by the presence of Cl-, and Cl- influx into the cells occurred evidently in response to the protonophore-induced increase in the inside-positive membrane potential (+ delta psi). In respiring cells, the addition of Cl- but not SO4(2-) salts caused a rapid and precipitous decrease in the + delta psi. A Nernstian relationship between the imposed transmembrane K+ gradient and the valinomycin-induced K+ diffusion potentials was observed when everted membrane vesicles were loaded with K2SO4 or KH2PO4 but not when loaded with KCl or KNO3. Thus, electrogenic Cl- transport occurred in Bacillus coagulans. In addition, a nonelectrogenic temperature-sensitive Cl- transport mechanism, with the net Cl- efflux coefficient (PCl-) ranging from 1.5 x 10(-4) to 6.1 x 10(-6) cm/s, accounted for the massive Cl- efflux from Cl(-)-loaded cells. Thus, B. coagulans, despite its dependence on the + delta psi and therefore the need to exclude anions, apparently possesses specific mechanisms for Cl- permeation. Active cells of B. coagulans prevented Cl- accumulation from attaining an electrochemical equilibrium, maintaining a delta micro Cl- of ca. -63 mV. B. coagulans therefore also possesses an energy-dependent mechanism for Cl- exclusion from the cells.  相似文献   

15.
Na+, K+, and Cl- transport in resting pancreatic acinar cells   总被引:2,自引:1,他引:1  
To understand the role of Na+, K+, and Cl- transporters in fluid and electrolyte secretion by pancreatic acinar cells, we studied the relationship between them in resting and stimulated cells. Measurements of [Cl-]i in resting cells showed that in HCO3(-)-buffered medium [Cl- ]i and Cl- fluxes are dominated by the Cl-/HCO3- exchanger. In the absence of HCO3-, [Cl-]i is regulated by NaCl and NaK2Cl cotransport systems. Measurements of [Na+]i showed that the Na(+)-coupled Cl- transporters contributed to the regulation of [Na+]i, but the major Na+ influx pathway in resting pancreatic acinar cells is the Na+/H+ exchanger. 86Rb influx measurements revealed that > 95% of K+ influx is mediated by the Na+ pump and the NaK2Cl cotransporter. In resting cells, the two transporters appear to be coupled through [K+]i in that inhibition of either transporter had small effect on 86Rb uptake, but inhibition of both transporters largely prevented 86Rb uptake. Another form of coupling occurs between the Na+ influx transporters and the Na+ pump. Thus, inhibition of NaK2Cl cotransport increased Na+ influx by the Na+/H+ exchanger to fuel the Na+ pump. Similarly, inhibition of Na+/H+ exchange increased the activity of the NaK2Cl cotransporter. The combined measurements of [Na+]i and 86Rb influx indicate that the Na+/H+ exchanger contributes twice more than the NaK2Cl cotransporter and three times more than the NaCl cotransporter and a tetraethylammonium-sensitive channel to Na+ influx in resting cells. These findings were used to develop a model for the relationship between the transporters in resting pancreatic acinar cells.  相似文献   

16.
To investigate the inhibitory effect of trans potassium on the Cl-/H+ symporter activity of brush-border membrane vesicles from guinea pig ileum, we measured both 36Cl uptake and, by the pyranine fluorescence method, proton fluxes, in the presence of appropriate H+ and K+ gradients. In the absence of valinomycin, a time-dependent inhibitory effect of chloride uptake by trans K+ was demonstrated. This inhibition was independent of the presence or absence of any K+ gradient. Electrical effects cannot be involved to explain these inhibitions because the intrinsic permeability of these vesicles to Cl- and K+ is negligibly small. Rather, our results show that, in the absence of valinomycin, the inhibitory effect of intravesicular K+ involves an acceleration of the rate of dissipation of the proton gradient through an electroneutral exchange of trans K+ for cis H+, catalyzed by the K+/H+ antiporter also present in these membranes. Valinomycin can further accelerate the rate of pH gradient dissipation by facilitating an electrically-coupled exchange between K+ and H+. To evaluate the apparent rate of pH-dissipating, downhill proton influx, we measured chloride uptake by vesicles preincubated in the presence of alkaline-inside pH gradients (pHout/pHin = 5.0/7.5), charged or not with K+. In the absence of intravesicular K+, proton influx exhibited monoexponential kinetics with a time constant k = 11 s-1. Presence of 100 mM K+ within the vesicles significantly increased the rate of pH gradient dissipation which, furthermore, became bi-exponential and revealed the appearance of an additional, faster proton influx component with k = 71 s-1. This new component we interpret as representing the sum of the electroneutral and the electrically-coupled exchange of trans K+ for cis H+, mentioned above. Finally, by using the pH-sensitive fluorophore, pyranine, we demonstrate that, independent of the absence or presence of a pH gradient, either vesicle acidification or alkalinisation can be generated by adding, respectively, Cl- or K+ to the extravesicular medium. Such results confirm the independent existence of both Cl-/H+ symporter and K+/H+ antiporter activities in our vesicle preparations, the relative activity of the former being larger under the conditions of the present experiments. The possible interplay of these two proton-transfer mechanisms in the regulation of the intracellular pH is discussed.  相似文献   

17.
应用普通玻璃微电极和离子选择性微电极,对正常及经过胰岛素处理的中华大蟾蜍卵母细胞膜电位、细胞内Na~+、K~+、Cl~-、H~+等活度及膜对Na~+、K~+的转运系数进行了测定。结果表明,胰岛素在促进蟾蜍卵母细胞发育成熟同时,具有使膜电位降低、细胞内Na~+、Cl~-活度增加、K~+、H~+活度减少及K~+转运系数降低等作用。胰岛素的上述作用可能与膜的通透性改变及膜上钠泵活性和Na~+/H~+交换的改变有关。  相似文献   

18.
ATP-dependent Cl- uptake by membrane vesicles from the rat brain plasma membrane fractions was not affected by the addition of 40 mM of K+, Na+ or HCO3- to the assay medium. Na+ and K+ did not alter the uptake even in the presence of a K+ ionophore, valinomycin (10 microM), or a H+/K+ exchanger, nigericin (10 microM), whereas in the presence of both of these ionophores, K+, but not Na+, reduced the Cl- uptake. Inhibitors of proton pump activity, N,N'-dicyclohexylcarbodiimide (1 mM) and 5-(N,N-hexamethylene)amiloride (40 microM), however, did not affect the Cl- uptake. These findings suggest the presence of a primary Cl- transport system probably associated with passive H+ flux in the brain plasma membranes.  相似文献   

19.
alpha-Thrombin, a potent mitogen for the hamster fibroblast cell line CCL 39, stimulates by approximately 3-fold 86Rb+ uptake in a mutant lacking the Na+/H+ antiport activity (PS 120). The major component of this stimulated 86Rb+ (K+) uptake is a bumetanide-sensitive flux (IC50 = 0.4 microM), which accounts for 50% of total K+ uptake in Go-arrested cells and is approximately 4-fold stimulated by maximal thrombin concentrations (EC50 = 5 X 10(-4) units/ml). This bumetanide-sensitive 86Rb+ uptake represents a Na+/K+/Cl- cotransport, as indicated by its dependence on extracellular Na+ and Cl- and by the existence in PS 120 cells of a bumetanide-sensitive K+-dependent 22Na+ uptake. The stimulation reaches its maximum within 2 min, is reduced at acidic intracellular pH values (half-maximal at pHi = 6.8), and can also be induced, to a lesser extent, by EGF and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, the effects of which are nearly additive. In contrast, preincubation with 12-O-tetradecanoylphorbol 13-acetate results in inhibition of thrombin- and EGF-induced stimulations, suggesting that activated protein kinase C might exert a feedback inhibitory control. This study clearly demonstrates that the growth factor-induced activation of the Na+/K+/Cl- cotransport is separated from the activation of the Na+/H+ antiport. However, activation of this cotransporter does not seem to play a major role in the mitogenic signaling pathway since its complete inhibition with bumetanide reduces only by 25-30% reinitiation of DNA synthesis.  相似文献   

20.
It has previously been shown (Baroin, A., F. Garcia-Romeu, T. Lamarre, and R. Motais. 1984a, b. Journal of Physiology. 350:137, 356:21; Mahé, Y., F. Garcia-Romeu, and R. Motais. 1985. European Journal of Pharmacology. 116:199) that the addition of catecholamines to an isotonic suspension of nucleated red blood cells of the rainbow trout first stimulates a cAMP-dependent, amiloride-sensitive Na+/H+ exchange. This stimulation seems to be transient. It is followed by a more permanent activation of a coupled entry of Na+ and Cl-, which is inhibited by amiloride but also by inhibitors of band 3 protein (DIDS, furosemide, niflumic acid). The coupled entry of Na+ and Cl- could therefore result from the parallel and simultaneous exchange of Na+out for H+in (via the cAMP-dependent Na+/H+ antiporter) and Cl- out for HCO3- in (via the anion exchange system located in band 3 protein). However, in view of the following arguments, it had been proposed that NaCl uptake does not proceed by the double-exchanger system but via an NaCl cotransport: (a) Na+ entry requires Cl- as anion (in NO3- medium, the Na uptake is strongly inhibited, whereas NO3- is an extremely effective substitute for Cl- in the anion exchange system); (b) Na uptake is not significantly affected by the presence of HCO3- in the suspension medium despite the fact that in red cells, Cl-/HCO3- exchange occurs more readily than the exchanges of Cl- for basic equivalents in a theoretically CO2-free medium (the so-called Cl-/OH- exchanges). The purpose of the present paper was a reassessment of the two models by using monensin, an ionophore allowing Na+/H+ exchange. From this study, it appears that NaCl entry results from the simultaneous functioning of the Na+/H+ antiporter and the anion exchange system. The apparent Cl dependence is explained by the fact that, in these erythrocytes, NO3- clearly inhibits the turnover rate of the Na+/H+ antiporter. As Na+/H+ exchange is the driving component in the salt uptake process, this inhibition explains the Cl requirement for Na entry. The lack of stimulation of cell swelling by bicarbonate is explained by the fact that the rate of anion exchange in a CO2-free medium (Cl-/OH- exchange) is roughly equivalent to that of Na+/H+ exchange and thus in practice is not limiting to the net influx of NaCl through the two exchangers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号