首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The function of the plastoquinone pool as a possible pump for vectorial hydrogen (H+ + e-) transport across the thylakoid membrane has been investigated in isolated spinach chloroplasts. Measurements of three different optical changes reflecting the redox reactions of the plastoquinone, the external H+ uptake and the internal H+ release led to the following conclusions: (1) A stoichiometric coupling of 1 : 1 : 1 between the external H+ uptake, the electron translocation through the plastoquinone pool and the internal H+ release (corrected for H+ release due to H2O oxidation) is valid (pHout = 8, excitation with repetitive flash groups). (2) The rate of electron release from the plastoquinone pool and the rate of proton release into the inner thylakoid space due to far-red illumination are identical over a range of a more than 10-fold variation. These results support the assumption that the protons taken up by the reduced plastoquinone pool are translocated together with the electrons through the pool from the outside to the inside of the membrane. Therefore, the plastoquinone pool might act as a pump for a vectorial hydrogen (H+ + e-) transport. The molecular mechanism is discussed. The differences between this hydrogen pump of chloroplasts and the proton pump of Halobacteria are outlined.  相似文献   

3.
1. In a sequence of flashes given to dark-adapted chloroplasts, the flash yield of proton release oscillates with a period of 4, which is similar but not identical to the oscillation of the O2 flash yield. 2. Using the proton release associated with ferricyanide reduction as a calibration, we computed that two protons are released in the terminal O2-liberating reaction; the other two protons are released in precursor conversion steps. 3. Analysis of the effect of preflashes on the oscillation pattern showed that the S1 leads to S2 transition releases no proton, the S0 leads to S1 transition somewhat less than one (0.75), and the S2 leads to S3 transition somewhat more than one (1.25). 4. The precision of the data was sufficient to exclude the possibility that in the four-step water oxidation, proton release follows a simple 1, 0, 1, 2 pattern. A possible model to interpret the observed flash yield patterns is discussed.  相似文献   

4.
Using a rapid pH electrode, measurements were made of the flash-induced proton transport in isolated spinach chloroplasts. To calibrate the system, we assumed that in the presence of ferricyanide and in steady-state flashing light, each flash liberates from water one proton per reaction chain. We concluded that with both ferricyanide and methylviologen as acceptors two protons per electron are translocated by the electron transport chain connecting Photosystem II and I. With methyl viologen but not with ferricyanide as an acceptor, two additional protons per electron are taken up due to Photosystem I activity. One of these latter protons is translocated to the inside of the thylakoid while the other is taken up in H2O2 formation. Assuming that the proton released during water splitting remains inside the thylakoid, we compute H+/e- ratios of 3 and 4 for ferricyanide and methylviologen, respectively. In continuous light of low intensity, we obtained the same H+/e- ratios. However, with higher intensities where electron transport becomes rate limited by the internal pH, the H+/e- ratio approached 2 as a limit for both acceptors. A working model is presented which includes two sites of proton translocation, one between the photoacts, the other connected to Photosystem I, each of which translocates two protons per electron. Each site presents a approximately 30 ms diffusion barrier to proton passage which can be lowered by uncouplers to 6-10 ms.  相似文献   

5.
The membrane bound coupling factor of photophosphorylation is studied after pretreatment of broken chloroplasts with the bifunctional N,N-orthophenyldimaleimide under energization of the thylakoid membrane by mild flashing light. The proton conduction of the membrane is monitored both via the electrochromic absorption changes and via selective pH-indicating dyes. It is found that the coupling factor, after interaction with N,N-orthophenyldimaleimide during the preillumination period, shortcircuits one of the two protons pumped inside after excitation of chloroplasts with one short flash of light. In contrast to the low proton conductivity of the unperturbed thylakoid membrane (relaxation time for a proton gradient greater than 5s), this extra proton channel leads to a partial relaxation of a proton gradient within a few ms. Although limited to only one proton per electron, this extra proton conducting pathway is not otherwise specific. It operates with protons resulting from both Photosystem I and Photosystem II activity. In addition it operates with protons already present in the internal phase before firing of the exciting light flash. These effects are prevented by the presence of ATP (but not GTP) during the preillumination period. It is suggested that the modified coupling factor is gated open by the light induced electric field across the thylakoid membrane while self closing after passage of one proton per activated coupling factor.  相似文献   

6.
The temperature dependence of the kinetics of P700 redox transients in bean chloroplasts was studied. The flashes of white light with different duration (7 microseconds, 0.5 and 0.75 ms) were fired simultaneously with the background continuous far red light (lambda max = 707 nm). It was shown that the rate of P700+ reduction was temperature dependent and increased with the rise of the concentration of the reductants in the electron transport chain between photosystems. Photosystem 2 donates electrons to P700+ at temperatures from -5 to 45 degrees C under various modes of flash illumination. Experiments with spin labels showed that there were correlation between the physical state of lipids in the chloroplasts membrane and the rates of different steps of electron transport from photosystem 2 to photosystem 1--plastoquinone reduction by photosystem 2 and plastoquinol oxidation by photosystem 1. We assume that the rates of electron transport reaction of the plastoquinone shuttle are controlled by diffusion of plastoquinone and plastoquinole in the hydrophobic part of the thylakoid membrane. Additional evidence in support of that proposal was obtained from the temperature dependence of light induced spin label reduction which occurred due to its interaction with the plastoquinol of plastosemiquinone.  相似文献   

7.
Richard Wagner  Wolfgang Junge 《BBA》1977,462(2):259-272
The membrane bound coupling factor of photophosphorylation is studied after pretreatment of broken chloroplasts with the bifunctional N,N-orthophenyldimaleimide under energization of the thylakoid membrane by mild flashing light. The proton conduction of the membrane is monitored both via the electrochromic absorption changes and via selective pH-indicating dyes. It is found that the coupling factor, after interaction with N,N-orthophenyldimaleimide during the preillumination period, shortcircuits one of the two protons pumped inside after excitation of chloroplasts with one short flash of light. In contrast to the low proton conductivity of the unperturbed thylakoid membrane (relaxation time for a proton gradient > 5s), this extra proton channel leads to a partial relaxation of a proton gradient within a few ms. Although limited to only one proton per electron, this extra proton conducting pathway is not otherwise specific. It operates with protons resulting from both Photosystem I and Photosystem II activity. In addition it operates with protons already present in the internal phase before firing of the exciting light flash. These effects are prevented by the presence of ATP (but not GTP) during the preillumination period. It is suggested that the modified coupling factor is gated open by the light induced electric field across the thylakoid membrane while self closing after passage of one proton per activated coupling factor.  相似文献   

8.
R. Tiemann  G. Renger  P. Gräber  H.T. Witt 《BBA》1979,546(3):498-519
The function of the plastoquinone pool as a possible pump for vectorial hydrogen (H+ + e?) transport across the thylakoid membrane has been investigated in isolated spinach chloroplasts. Measurements of three different optical changes reflecting the redox reactions of the plastoquinone, the external H+ uptake and the internal H+ release led to the following conclusions:(1) A stoichiometric coupling of 1 : 1 : 1 between the external H+ uptake, the electron translocation through the plastoquinone pool and the internal H+ release (corrected for H+ release due to H2O oxidation) is valid (pHout = 8, excitation with repetitive flash groups). (2) The rate of electron release from the plastoquinone pool and the rate of proton release into the inner thylakoid space due to far-red illumination are identical over a range of a more than 10-fold variation.These results support the assumption that the protons taken up by the reduced plastoquinone pool are translocated together with the electrons through the pool from the outside to the inside of the membrane. Therefore, the plastoquinone pool might act as a pump for a vectorial hydrogen (H+ + e?) transport. The molecular mechanism is discussed. The differences between this hydrogen pump of chloroplasts and the proton pump of Halobacteria are outlined.  相似文献   

9.
Effects of various temperatures on the rates of electron transport between two photosystems, the light-induced uptake of protons, kinetics of proton efflux from the chloroplasts in the dark and photophosphorylation were studied in isolated chloroplasts. There are correlations between the physical state of thylakoid membrane and the rates of electron- and proton transport processes. The temperature dependence of "structural" parameter (fluidity of lipids in membrane) as well as the rates of electron- and proton transport processes reveal the breaks under the same temperatures. Stimulation of photophosphorylation by temperature increasing correlates with the heat activation of chloroplasts latent ATPase due to thermoinduced structural changes in the heat activation of chloroplasts latent ATPase due to thermoinduced structural changes in the protein part of CF0-CF1 complex. The rate of photophosphorylation also correlates with the physical state of membrane lipids. Thermoinduced "melting" of the thylakoid membrane inhibits the ATP formation because of a decrease in photosystem 2 photochemical activity and stimulation of membrane conductivity for protons.  相似文献   

10.
A detailed study of the photo-induced decline in chlorophyll a fluorescence intensity (Kautsky phenomenon) in coupled isolated chloroplasts from a high level (P) to a low stationary level (S) is presented. 1. A linear relationship between P leads to S quenching and intrathylakoid H+ concentration was found. When the light-induced proton gradient was abolished by uncoupling, the fluorescence emission at room temperature was lowered proportionally to increased H+ concentration in the medium. 2. Fluorescence spectra at -196 degrees C of samples frozen at the P and S states showed no significant differences in the Photosystem I/Photosystem II ratio of fluorescence emission. Furthermore, freezing to -196 degrees C reversed the P leads to S quenching. This indicates that the P leads to S quenching is not related to an increase of spillover of excitation energy from Photosystem II to Photosystem I. 3. When Mg2+ was added to thylakoids suspended in a medium free of divalent cations, the inhibition of spillover required lower Mg2+ concentrations (half saturation at 0.6 mM). Increased proton concentration in the medium also inhibited spillover. 4. The results are interpreted in terms of two sites of Mg2+ and H+ effects on excitation deactivation in Photosystem II. One site is located on the outer face of the thylakoid membrane; action of both Mg2+ and H+ at this side diminishes spillover. The second site is located on the inner face of the membrane; as Mg2+ is displaced there by protons, a non-photochemical quenching of Photosystem II fluorescence is induced, which is manifested by the P leads to S decline.  相似文献   

11.
Lars F. Olsen 《BBA》1982,682(3):482-490
The kinetics of redox changes of P-700, plastocyanin and cytochrome f in chloroplasts suspended in a fluid medium at sub-zero temperatures have been studied following excitation of the chloroplasts with either a single-turnover flash, a series of flashes or continuous light. The results show that: (1) The kinetics of reduction of P-700+ and those of oxidation of plastocyanin are consistent with a bimolecular reaction between these two components as previously suggested (Olsen, L.F., Cox, R.P. and Barber, J. (1980) FEBS Lett. 122, 13–16). (2) Cytochrome f shows heterogeneity with respect to its kinetics of oxidation by Photosystem I. (3) In contrast to the situation when plastoquinol is the electron donor, reduction of cytochrome f by electrons derived from diaminodurene occurs with sigmoidal kinetics that shows a good fit to an apparent equilibrium constant of 12 between the cytochrome and P-700. (4) The rate of electron transfer from plastoquinol to Photosystem I depends on the redox state of the plastoquinone pool. (5) In relation to current ideas about the lateral heterogeneity of Photosystem I and Photosystem II in the thylakoid membrane, the results are consistent with the function of plastocyanin as a mobile carrier of electrons in the intrathylakoid space.  相似文献   

12.
A patch-clamp method was used for measuring light-induced currents (photocurrents) in single dark-adapted Peperomia metallica chloroplasts in a 'whole-thylakoid' configuration. The multi-phasic photocurrent profiles upon a train of multiple flashes (time separation between flashes in the train 1 s) show the following characteristics: (i) photocurrent generation originates from trans-thylakoid charge transfer accompanying reaction center (RC)- and Q-cycle turnover; (ii) a 15–30% decrease in the amplitude of the RC-driven current in the second and following flashes, concomitantly with an increase in the dark recovery time of the current; and (iii) a binary oscillation of the Q-cycle current generator with high activity in even numbered flashes. The decrease in amplitude and decay rate constant of the photocurrent in a double flash after dark adaptation are interpreted in terms of a change in the electric conductance of the thylakoid lumen. Data are interpreted to indicate a light control of the thylakoid lumen via a narrowing of the planar sheet-like structures by 1 to 3 single turnover flashes. A simple method is given to determine the bioenergetic and electric parameters of the thylakoid membrane of a single chloroplast from the current profiles in a double flash. The data indicate that 1 s after a saturating flash the fraction of closed inactive centers is less than 3%.  相似文献   

13.
Susan Flores  Donald R. Ort 《BBA》1984,766(2):289-302
The maximum phosphorylation efficiency achieved with synchronous turnovers of Photosystem II (PS II) in spinach chloroplast lamellae is 0.3 molecules of ATP per pair of electrons transferred. This is the same as the efficiency observed for PS II operating alone in continuous light and would seem to indicate less than 50% coupling efficiency. Flash-induced ATP synthesis associated with both photosystems acting in unison closely approaches twice the flash-induced ATP synthesis associated with the Photosystem-I-dependent oxidation of duroquinol (itself 0.6) and comes close to equalling the highest efficiency observed in steady-state PS I + PS II electron transport. The anomalously low coupling efficiency seen when PS II is operating alone can be overcome by a ΔpH of two units imposed before flash illumination, or by a prior flash series involving the entire electron transfer chain. In contrast, prior electron transport through PS II alone is only slightly effective in enhancing the coupling efficiency of subsequent PS II turnovers. (It should be noted that in all cases where supplementary energy was provided, either by a proton gradient or by prior illumination, this supplementary energy was always below the energetic threshold for phosphorylation. Furthermore, the enhancement of PS II coupling efficiency by supplementary energy persisted even after a large number of subsequent PS II-inducing flashes). The efficiency of flash-induced ATP synthesis associated with whole-chain electron transfer or with PS-I-dependent duroquinol oxidation is also enhanced by the supplementary energy, but only during the first few inefficient flashes, suggesting that in this case the supplementary energy may simply be contributing to the initial build-up of an energetic threshold for ATP synthesis. This cannot be the case when the same supplementary energy contributes to the efficiency of the PS II reaction, since the enhancement then persists for a long time and contributes to an essentially constant flash yield of ATP. Our results imply that during electron transfer involving both photosystems, PS II participates in generating about half of the total ATP, whereas it operates inefficiently only when operating alone. Since hydrogen ions produced by PS I are able to raise the efficiency of subsequent PS-II-dependent phosphorylation, at least some cooperation between the two photosystems takes place and this suggests some donation of protons from PS I to PS II. However, the inability of PS II alone to achieve high efficiency, even with prolonged pre-illumination, would seem to indicate some functional distinction of protons from the two photosystems.  相似文献   

14.
The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.  相似文献   

15.
16.
Sándor Demeter  Imre Vass 《BBA》1984,764(1):24-32
In the glow curves of chloroplasts excited by a series of flashes at +1°C the intensity of the main thermoluminescence band appearing at +30°C (B band; B, secondary acceptor of Photosystem II) exhibits a period-4 oscillation with maxima on the 2nd and 6th flashes indicating the participation of the S3 state of the water-splitting system in the radiative charge recombination reaction. After long-term dark adaptation of chloroplasts (6 h), when the major part of the secondary acceptor pool (B pool) is oxidized, a period-2 contribution with maxima occurring at uneven flash numbers appears in the oscillation pattern. The B band can even be excited at ?160°C as well as by a single flash in which case the water-splitting system undergoes only one transition (S1 → S2). The experimental observations and computer simulation of the oscillatory patterns suggest that the B band originates from charge recombination of the S2B? and S3B? redox states. The half-time of charge recombination responsible for the B band is 48 s. When a major part of the plastoquinone pool is reduced due to prolonged excitation of the chloroplasts by continuous light, a second band (Q band; Q, primary acceptor of Photosystem II) appears in the glow curve at +10°C which overlaps with the B band. In chloroplasts excited by flashes prior to DCMU addition only the Q band can be observed showing maxima in the oscillation pattern at flash numbers 2, 6 and 10. The Q band can also be induced by flashes after DCMU addition which allows only one transition of the water-splitting system (S1 → S2). In the presence of DCMU, electrons accumulate on the primary acceptor Q, thus the Q band can be ascribed to the charge recombination of either the S2Q? or S3Q? states depending on whether the water-splitting system is in the S2 or the S3 state. The half-time of the back reaction of Q? with the donor side of PS II (S2 or S3 states) is 3 s. It was also observed that in a sequence of flashes the peak positions of the Q and B bands do not depend on the advancement of the water-splitting system from the S2 state to the S3 state. This result implies that the midpoint potential of the water-splitting system remains unmodified during the S2 → S3 transition.  相似文献   

17.
Proton release inside thylakoids, which is linked to the action of the water-oxidizing enzyme system, was investigated spectrophotometrically with the dye neutral red under conditions when the external phase was buffered. Under excitation of dark-adapted chloroplasts with four short laser flashes in series, the pattern of proton release as a function of the flash number was recorded and interpreted in the light of the generally accepted scheme for consecutive transitions of the water-oxidizing enzyme system: S0 → S1, S1 → S2, S2 → S3, S3 → S4, S0. It was found that the proton yield after the first flash varied in a reproducible manner, being dependent upon the dark pretreatment given. In terms of the proton-electron reaction during these transitions, the pattern was as follows. In strictly dark-adapted chloroplasts (frozen chloroplasts thawed in darkness and kept for at least 7 min in the dark after dilution), it was fitted well by a stoichiometry of 1:0:1:2. In a less stringently dark-adapted preparation (as above but thawed under light), it was fitted by 0:1:1:2. Mechanistically this is not yet understood. However, it is a first step towards resolving controversy over this pattern among different laboratories. Under conditions where the 1:0:1:2 stoichiometry was observed, proton release was time resolved. Components with half-rise times of 500 and 1000 μs could be correlated with the S2 → S3 and S3 → S4 transitions, respectively. Proton release during the S0 → S1 transition is more rapid, but is less well attributable to the transitions due to error proliferation. A distinct component with a half-rise time of only 100 μs was observed after the second flash. Since it did not fit into the expected kinetics (based on literature data) for the Si → Si+1 transitions, we propose that it reflects proton release from a site which is closer to the reaction center of Photosystem (PS) II than the water-splitting enzyme system. This is supported by the observation of rapid proton release under conditions where water oxidation is blocked. Related experiments on the pattern of proton uptake at the reducing side of PS II indicated that protons act as specific counterions for semiquinone anions without binding to them.  相似文献   

18.
G. Girault  J.M. Galmiche 《BBA》1974,333(2):314-319
The restoration by silicotungstic acid of the reversible light-induced pH rise mediated by pyocyanine in EDTA-treated chloroplasts corresponds to an irreversible fixation of the acid. The proton uptake is linearly related to the amount of fixed acid (4 protons per molecule of acid) as long as the amount of silicotungstic acid does not exceed 200 nmoles/mg of chlorophyll.In the same conditions silicotungstic acid partly restores ferricyanide reduction and O2 evolution in chloroplasts suspensions supplemented with DCMU. These photoreactions are observed only with chloroplasts and these chloroplasts must have an unimpaired water-splitting mechanism.Silicotungstic acid does not impair DCMU fixation on the specific sites. More likely in its presence the properties of the membrane change and ferricyanide can accept electrons from a part of the electron transport chain, between the Photosystem II reaction center and the block of the electron flow by DCMU.  相似文献   

19.
Washing of spinach chloroplasts with high concentrations of Tris3 induces pH-dependent changes in chloroplast reactions. At high pH (8.4) Tris washing causes the inhibition of Photosystem 2 activity which can be prevented by the maintenance of reducing conditions during washing. Washing at low pH (7.2) causes an enhancement of oxygen evolution and increased rate of ferricyanide photoreduction which is not influenced by the presence of reducing conditions. The increased rate of electron flow is accompanied by the inhibition of light mediated phosphorylating activity, acid-induced ATP synthesis, light-induced proton uptake and light triggered Mg2+ ATPase activity. Tris treatment at low pH also causes a sensitization of Photosystem 2 activity such that oxygen evolution is inhibited by low concentrations of tris at high pH. This inhibition of the stimulated electron flow is not accompanied by a reconstitution of the photophosphorylation activity. A detailed analysis of the effect of tris treatment on Photosystem II activity and membrane dependent energy conversion shows that the treatment of chloroplasts causes an inhibition of the energy conversion process which is independent of the effect on oxygen evolution. Determination of the presence of coupling factor (as determined by ATPase activity) and membrane osmotic properties reveal normal levels of enzyme activity and osmotic response in treated chloroplasts. The inhibition of the energy conversion process is accompanied by reduced capacity to maintain a proton gradient. Kinetic analysis of the proton uptake reaction reveals that Tris treatment renders the grana membranes more permeable to protons.  相似文献   

20.
1. Chloroplasts have been preilluminated by a sequence of n short saturating flashes immediately before alkalinization to pH 9.3, and brought back 2 min later to pH 7.8. The assay of Photosystem II activity through dichlorophenolindophenol photoreduction, oxygen evolution, fluorescence induction, shows that part of the centers is inactivated and that this part depends on the number of preilluminating flashes (maximum inhibition after one flash) in a way which suggests identification of state S2 as the target for alkaline inactivation. 2. As shown by Reimer and Trebst ((1975) Biochem. Physiol. Pflanz. 168, 225-232) the inactivation necessitates the presence of gramicidin, which shows that the sensitive site is on the internal side of the thylakoid membrane. 3. The electron flow through inactivated Photosystem II is restored by artificial donor addition (diphenylcarbazide or hydroxylamine); this suggests that the water-splitting enzyme itself is blocked. The inactivation is accompanied by a solubilization of bound Mn2+ and by the occurence of EPR Signal II "fast". 4. Glutaraldehyde fixation before the treatment does not prevent the inactivation which thus does not seem to involve a protein structural change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号