首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzidine and several derivatives are activated to mutagenic species in an H2O2-dependent Ames test system. Optical and electron paramagnetic resonance (EPR) spectroscopy are employed in studies of the H2O2-dependent oxidation of benzidine and 3,5,3',5'-tetramethylbenzidine (TMB) catalyzed by intact bacteria, and provide direct evidence for peroxidase activity in Salmonella typhimurium. The acetylase-proficient Ames tester strain TA98 and its acetylase-deficient derivative TA98/1,8-DNP6 are equally responsive to H2O2-dependent mutagenicity; enzymatic acetylation appears not to be involved in activation of benzidine, in this system. The H2O2-dependent mutagenicity of benzidine and oxidation of TMB are observed when the assays are carried out in acetate buffer (pH 5.5), but not in 2-[N-morpholino]ethane sulfonic acid (MES) buffer, at the same pH. This difference is interpreted in terms of the effects of these buffers on the intracellular pH of the bacteria. The H2O2-dependent mutagenicity of several benzidine congeners is also described.  相似文献   

2.
Prostaglandin H synthase catalyzes the first step in the synthesis of prostaglandins from arachidonic acid. The peroxidase activity of this enzyme can support the oxidation of xenobiotics, particularly aromatic amines. This pathway of metabolism may contribute to the activation of carcinogenic aromatic amines in target tissues such as the skin, lung, and bladder. In this review, recent work on this subject is summarized. I emphasize the elucidation of the structures of aromatic amine oxidation products, and their interactions with biological macromolecules. Prostaglandin H synthase supports the activation of benzidine to a mutagenic species in the Ames (Salmonella typhimurium) test, and our studies of the mechanism of this activation are described.  相似文献   

3.
The conventional Ames assay metabolising system was confirmed to be deficient in its ability to N-acetylate. This may render the test less sensitive to compounds which normally have an acetylation step during their in vivo activation to carcinogens. The addition of acetyl-coenzyme A to the S9 mix in the Ames assay increased the mutagenicity of benzidine in Salmonella typhimurium strains TA98 and TA1538 4-5-fold. This was consistent with the observation that benzidine is N-acetylated prior to DNA binding in vivo in rat liver. Two 3,3'-disubstituted benzidines, o-tolidine and o-dianisidine, were also tested. A smaller increase in o-tolidine mutagenicity, compared to that observed with benzidine, occurred with the addition of acetyl-coenzyme A. However, the production of acetylated metabolites from o-tolidine was only 37% of that from benzidine. The mutagenicity of o-dianisidine was unaffected by acetyl-coenzyme A. Acetylation of o-dianisidine was only 16% of that observed with benzidine, and the N-acetyl derivatives of o-dianisidine showed lower mutagenicity than the parent amine. The differing responses of benzidine, o-tolidine and o-dianisidine to addition of acetyl-coenzyme A suggests it may not be possible to simply infer the metabolism of 3,3'-disubstituted benzidines to DNA binding species from data on benzidine itself.  相似文献   

4.
Human thyroid peroxidase (hTPO) catalyzes a one-electron oxidation of benzidine derivatives by hydrogen peroxide through classical Chance mechanism. The complete reduction of peroxidase oxidation products by ascorbic acid with the regeneration of primary aminobiphenyls was observed only in the case of 3,3',5,5'-tetramethylbenzidine (TMB). The kinetic characteristics (k(cat) and K(m)) of benzidine (BD), 3,3'-dimethylbenzidine (o-tolidine), 3,3'-dimethoxybenzidine (o-dianisidine), and TMB oxidation at 25 degrees C in 0.05 M phosphate-citrate buffer, pH 5.5, catalyzed by hTPO and horseradish peroxidase (HPR) were determined. The effective K(m) values for aminobiphenyls oxidation by both peroxidases raise with the increase of number of methyl and methoxy substituents in the benzidine molecule. Efficiency of aminobiphenyls oxidation catalyzed by either hTPO or HRP increases with the number of substituents in 3, 3', 5, and 5' positions of the benzidine molecule, which is in accordance with redox potential values for the substrates studied. The efficiency of HRP in the oxidation of benzidine derivatives expressed as k(cat)/K(m) was about two orders of magnitude higher as compared with hTPO. Straight correlation between the carcinogenicity of aminobiphenyls and genotoxicity of their peroxidation products was shown by the electrophoresis detecting the formation of covalent DNA cross-linking.  相似文献   

5.
We have investigated the activation of p-cresol to form DNA adducts using horseradish peroxidase, rat liver microsomes and MnO(2). In vitro activation of p-cresol with horseradish peroxidase produced six DNA adducts with a relative adduct level of 8.03+/-0.43 x 10(-7). The formation of DNA adducts by oxidation of p-cresol with horseradish peroxidase was inhibited 65 and 95% by the addition of either 250 or 500 microM ascorbic acid to the incubation. Activation of p-cresol with phenobarbital-induced rat liver microsomes with NADPH as the cofactor; resulted in the formation of a single DNA adduct with a relative adduct level of 0.28+/-0.08 x 10(-7). Similar incubations of p-cresol with microsomes and cumene hydroperoxide yielded three DNA adducts with a relative adduct level of 0.35+/-0.03 x 10(-7). p-Cresol was oxidized with MnO(2) to a quinone methide. Reaction of p-cresol (QM) with DNA produced five major adducts and a relative adduct level of 20.38+/-1.16 x 10(-7). DNA adducts 1,2 and 3 formed by activation of p-cresol with either horseradish peroxidase or microsomes, are the same as that produced by p-cresol (QM). This observation suggests that p-cresol is activated to a quinone methide intermediate by these activation systems. Incubation of deoxyguanosine-3'-phosphate with p-cresol (QM) resulted in a adduct pattern similar to that observed with DNA; suggesting that guanine is the principal site for modification. Taken together these results demonstrate that oxidation of p-cresol to the quinone methide intermediate results in the formation of DNA adducts. We propose that the DNA adducts formed by p-cresol may be used as molecular biomarkers of occupational exposure to toluene.  相似文献   

6.
Peroxidase-catalyzed benzidine binding to DNA and other macromolecules   总被引:1,自引:0,他引:1  
[14C]Benzidine is rapidly oxidized by a peroxidase/H2O2 system to products which bind irreversibly to DNA. The presence of exogenous DNA also prevented benzidine polymerization to 'benzidine brown' and azobenzidine. Two molar equivalents of H2O2 were required to oxidize the benzidine and achieve maximal DNA binding. Furthermore, 95% of the benzidine was trapped and 36 nmol benzidine was bound per mg DNA. Polyriboguanylic acid was as effective as DNA in binding benzidine, but polyriboadenylic acid, polyribouridylic acid and polyribocytidylic acid were much less effective. Binding of [14C]benzidine correlated well with the absorbance at 295 nm and 390 nm of the modified DNA or various synthetic homopolymers of ribonucleotides isolated from the reaction mixture. The peroxidase/H2O2 system also catalyzed the binding of dichlorobenzidine, o-tolidine and o-dianisidine to DNA but 3,5,3',5'-tetramethylbenzidine, a non-carcinogen, did not bind. The binding could be prevented by various biological hydrogen donors, thiols, or phenolic antioxidants. The mechanisms for DNA protection were investigated; the oxidized benzidine species involved in binding can be reduced with ascorbate, NADPH, or thiols, and trapped by thiols or phenolic antioxidants to form conjugates or adducts.  相似文献   

7.
M M Iba 《Mutation research》1987,182(5):231-241
The metabolic basis of the differential activation of 4 benzidines--3,3'-dichlorobenzidine (DCB), benzidine (BZ), o-tolidine (TOL) and o-dianisidine (DIN)--to mutagens was examined in the Ames test, using Salmonella typhimurium TA98. For each benzidine congener, the comparative activation by 3 rat liver enzyme systems--(i) postmitochondrial supernatant (S9), (ii) S9 + acetylcoenzyme A (S9-Ac) and (iii) microsomes--and the effect thereon of animal pretreatment with 3 cytochrome P-450 inducers--DCB, 3-methylcholanthrene (MC) and phenobarbital (PB)--were examined. DCB was the most activated of the benzidines, with activation by the 3 systems being in the order: S9 = S9-Ac greater than microsomes, whereas dianisidine and tolidine were the least activated. Benzidine was activated only in the S9 systems but the S9-catalyzed activation of benzidine, unlike that of DCB, was enhanced by added acetylcoenzyme A. Pretreatment with either DCB, MC or PB enhanced the activation of DCB, decreased that of benzidine, and had no effect on that of tolidine or dianisidine. The enhanced DCB activation was most pronounced with DCB pretreatment and was 2.5-fold, 2-fold, and 3-fold, in S9-Ac, S9, and microsomes, respectively. The microsomal-catalyzed DCB activation was inhibited by the cytochrome P-450 inhibitors 2,4-dichloro-6-phenylphenoxyethylamine and alpha-naphthoflavone by 93% and 48%, respectively. DCB, but not its congeners, elicited NADPH-dependent metabolite complex formation with microsomal cytochrome P-450. The results show that DCB is the most mutagenic of the 4 benzidines under conditions of cytochrome-P-450-catalyzed activation and suggest that the DCB activation may be catalyzed most effectively by cytochrome P-450 species induced specifically by the compound itself.  相似文献   

8.
2-Acetylaminofluorene, 2-aminofluorene, 4-aminobiphenyl, 2-naphthylamine, 2-aminoanthracene and benzidine were assayed for mutagenicity in the Ames test in the presence of hepatic microsomal preparations derived from mouse, hamster, rat, pig and man. Prior to each mutagenicity assay all activation systems were fully characterized with respect to mono-oxygenase and mixed-function amine oxidase activities. All compounds were metabolically activated to mutagens by all activation systems, but with markedly different efficiencies, hamster being the only species which readily activated all amines. The hamster also exhibited the highest ethoxyresorufin O-deethylase and dimethylaniline N-oxidase activities.  相似文献   

9.
Bioactivation of xenobiotics by prostaglandin H synthase   总被引:4,自引:0,他引:4  
Prostaglandin H synthase (PHS) catalyzes the oxidation of arachidonic acid to prostaglandin H2 in reactions which utilize two activities, a cyclooxygenase and a peroxidase. These enzymatic activities generate enzyme- and substrate-derived free radical intermediates which can oxidize xenobiotics to biologically reactive intermediates. As a consequence, in the presence of arachidonic acid or a peroxide source, PHS can bioactivate many chemical carcinogens to their ultimate mutagenic and carcinogenic forms. In general, PHS-dependent bioactivation is most important in extrahepatic tissues with low monooxygenase activity such as the urinary bladder, renal medulla, skin and lung. Mutagenicity assays are useful in the detection of compounds which are converted to genotoxic metabolites during PHS oxidation. In addition, the oxidation of xenobiotics by PHS often form metabolites or adducts to cellular macromolecules which are specific for peroxidase- or peroxyl radical-dependent reactions. These specific metabolites and/or adducts have served as biological markers of xenobiotic bioactivation by PHS in certain tissues. Evidence is presented which supports a role for PHS in the bioactivation of several polycyclic aromatic hydrocarbons and aromatic amines, two classes of carcinogens which induce extrahepatic neoplasia. It should be emphasized that the toxicities induced by PHS-dependent bioactivation of xenobiotics are not limited to carcinogenicity. Examples are given which demonstrate a role for PHS in pulmonary toxicity, teratogenicity, nephrotoxicity and myelotoxicity.  相似文献   

10.
The human bladder carcinogen BENZIDINE was found to be converted by horseradish peroxidase and H2O2 to an intermediate which reacts with thiol-containing nucleophiles to give rise to a pattern of products which are identical to those produced by reaction of the two electron oxidation product of benzidine, 4,4′-biphenoquinonediimine, under identical conditions at physiological pH. The properties of the major reaction product are dependent on the identity of the thiol employed and are consistent with those expected for a ring-(S)-thioether conjugate of benzidine. These results may be indicative of a previously unrecognized minor pathway of benzidine metabolism.  相似文献   

11.
Chlorogenic acid (1), a cancer chemopreventive agent widely found in fruits, tea and coffee, undergoes efficient conjugation with glutathione (GSH), in the presence of horseradish peroxidase/H(2)O(2) or tyrosinase at pH 7.4, to yield three main adducts that have been isolated and identified as 2-S-glutathionylchlorogenic acid (3), 2,5-di-S-glutathionylchlorogenic acid (4) and 2,5,6-tri-S-glutathionylchlorogenic acid (5) by extensive NMR analysis. The same pattern of products could be obtained by reaction of 1 with GSH in the presence of nitrite ions in acetate buffer at pH 4. Mechanistic experiments suggested that oxidative conjugation reactions proceed by sequential nucleophilic attack of GSH on ortho-quinone intermediates. Overall, these results provide the first complete spectral characterization of the adducts generated by biomimetic oxidation of 1 in the presence of GSH, and disclose a new possible nitrite-mediated conjugation pathway of 1 with GSH at acidic pH of physiological relevance.  相似文献   

12.
Nineteen coded chemicals were tested in an international collaborative study for their mutagenic activity. The assay system employed was the Ames II Mutagenicity Assay, using the tester strains TA98 and TAMix (TA7001-7006). The test compounds were selected from a published study with a large data set from the standard Ames plate-incorporation test. The following test compounds including matched pairs were investigated: cyclophoshamide, 2-naphthylamine, benzo(a)pyrene, pyrene, 2-acetylaminofluorene, 4,4'-methylene-bis(2-chloroaniline), 9,10-dimethylanthracene, anthracene, 4-nitroquinoline-N-oxide, diphenylnitrosamine, urethane, isopropyl-N(3-chlorophenyl)carbamate, benzidine, 3,3'-5,5'-tetramethylbenzidine, azoxybenzene, 3-aminotriazole, diethylstilbestrol, sucrose and methionine. The results of both assay systems were compared, and the inter-laboratory consistency of the Ames II test was assessed. Of the eight mutagens selected, six were correctly identified with the Ames II assay by all laboratories, one compound was judged positive by five of six investigators and one by four of six laboratories. All seven non-mutagenic samples were consistently negative in the Ames II assay. Of the four chemicals that gave inconsistent results in the traditional Ames test, three were uniformly classified as either positive or negative in the present study, whereas one compound gave equivocal results. A comparison of the test outcome of the different investigators resulted in an inter-laboratory consistency of 89.5%. Owing to the high concordance between the two test systems, and the low inter-laboratory variability in the Ames II assay results, the Ames II is an effective screening alternative to the standard Ames test, requiring less test material and labor.  相似文献   

13.
Unlike lactoperoxidase and horseradish peroxidase, thyroid peroxidase catalyzed the oxidation of hydroquinone mostly by way of 2-electron transfer. This conclusion could be derived from three independent experiments: ESR measurements of p-benzosemiquinone, trapping the unpaired electron by cytochrome c, and spectrophotometric analysis of catalytic intermediates of the enzymes. The 1-electron flux for hydroquinone oxidation was found to be 15-19% in the reaction of thyroid peroxidase, while it was nearly 100% in the reactions of lactoperoxidase and horseradish peroxidase. From the spectrophotometric analysis of the catalytic intermediates of enzyme, it was suggested that the mechanism of oxidation catalyzed by thyroid peroxidase changes from a 2-electron to a 1-electron type as the substituents at 2- and 6-positions of phenol become bulky or heavy. On the other hand, the mechanism was invariably a 1-electron type when the oxidation of phenols was catalyzed by lactoperoxidase or horseradish peroxidase. These three peroxidases all catalyzed 1-electron oxidation of ascorbate.  相似文献   

14.
Congo red, an azo dye derived from benzidine, and 2-azoxyfluorene, a derivative of 2-aminofluorene, were reduced during overnight incubation with a suspension of rat intestinal bacteria. High performance liquid chromatography and ultraviolet spectral analysis verified the presence of benzidine in extracts of the Congo red incubations and 2-aminofluorene in extracts of the 2-azoxyfluorene incubations. Extracts of the Congo red incubations were mutagenic toward Salmonella typhimurium TA1538 in the presence of a post-mitochondrial activating system, but Congo red was not mutagenic without this reductive pretreatment. Thus, the utility of the Ames test in screening for potential mutagens may be expanded by a reductive pretreatment utilizing cecal bacteria.  相似文献   

15.
Because benzidine and its derivatives have possible carcinogenic activity, a safe method is needed to demonstrate endogenous peroxidase activity. Colonies derived from mouse bone marrow cells in plasma clot culture were classified as granulocyte (CFU-g) or macrophage (CFU-m) precursors by peroxidase and naphthol AS acetate (NASA) esterase staining, respectively. Endogenous peroxidase activity was measured using benzidine or p-phenylenediazine-pyrocatechol (PPD-PC). The effectiveness of peroxidase staining with both reagents was evaluated under several conditions, and the enzyme property was confirmed by inactivation with a variety of inhibitors. The level of peroxidase activity did not differ significantly between PPD-PC and benzidine. Colony number and number of cultured cells were strongly correlated (P greater than 0.983). We conclude that PPD-PC safely demonstrates peroxidase activity in cultured cells and is as accurate, reliable, and efficient as benzidine.  相似文献   

16.
Enzymatic activation of hydrazine derivatives. A spin-trapping study   总被引:2,自引:0,他引:2  
The oxidative metabolism of hydralazine, isoniazid, iproniazid, and phenylhydrazine has been studied using spin-trapping techniques. The oxidation of these hydrazine derivatives, catalyzed by horseradish peroxidase and prostaglandin synthetase, produces reactive free radical intermediates. Enzymatic activation of hydralazine produce the nitrogen-centered hydralazyl radical (RNHNH); phenylhydrazine formed only the phenyl radical. Iproniazid, on the other hand, formed both the isopropyl radical and a hydroperoxy radical. The formation of the hydroperoxy radical was not inhibited by superoxide dismutase. The horseradish peroxidase-catalyzed oxidation of isoniazid produced two different carbon-centered radicals. The identity of these radicals is not clear; however, they may arise from an acyl (RCO) radical and an alkyl (R) radical.  相似文献   

17.
The metabolism of styrene by prostaglandin hydroperoxidase and horseradish peroxidase was examined. Ram seminal vesicle microsomes in the presence of arachidonic acid or hydrogen peroxide and glutathione converted styrene to glutathione adducts. Neither styrene 7,8-oxide nor styrene glycol was detected as a product in the incubation. Also, the addition of styrene 7,8-oxide and glutathione to ram seminal vesicle microsomes did not yield styrene glutathione adducts. The peroxidase-generated styrene glutathione adducts were isolated by high pressure liquid chromatography and characterized by NMR and tandem mass spectrometry as a mixture of (2R)- and (2S)-S-(2-phenyl-2-hydroxyethyl)glutathione. (1R)- and (1S)-S-(1-phenyl-2-hydroxyethyl)glutathione were not formed by the peroxidase system. The addition of phenol or aminopyrine to incubations, which greatly enhances the oxidation of glutathione to a thiyl radical by peroxidases, increased the formation of styrene glutathione adducts. We propose a new mechanism for the formation of glutathione adducts that is independent of epoxide formation but dependent on the initial oxidation of glutathione to a thiyl radical by the peroxidase, and the subsequent reaction of the thiyl radical with a suitable substrate, such as styrene.  相似文献   

18.
Methyl-tert-butylether (MTBE) is an oxygenate widely used in the United States as a motor vehicle fuel additive to reduce emissions and as an octane booster [National Research Council, Toxicological and Performance Aspects of Oxygenated Motor Vehicle Fules, National Academy Press, Washington, DC, 1996]. But it is the potential for MTBE to enter drinking water supplies that has become an area of public concern. MTBE has been shown to induce liver and kidney tumors in rodents but the biochemical process leading to carcinogenesis is unknown. MTBE was previously shown to be non-mutagenic in the standard Ames plate incorporation test with tester strains that detect frame shift (TA98) and point mutations (TA100) and in a suspension assay using TA104, a strain that detects oxidative damage, suggesting a non-genotoxic mechanism accounts for its carcinogenic potential. These strains are deficient in excision repair due to deletion of the uvrB gene. We hypothesized that the carcinogenic activity of MTBE may be dependent upon a functional excision repair system that attempts to remove alkyl adducts and/or oxidative base damage caused by direct interaction of MTBE with DNA or by its metabolites, formaldehyde and tert-butyl alcohol (TBA), established carcinogens that are mutagenic in some Ames strains. To test our hypothesis, the genotoxicity of MTBE-induced DNA alterations was assayed using the standard Ames test with TA102, a strain similar to TA104 in the damage it detects but uvrB + and, therefore, excision repair proficient. The assay was performed (1) with and without Aroclor-induced rat S-9, (2) with and without the addition of formaldehyde dehydrogenase (FDH), and (3) with human S-9 homogenate. MTBE was weakly mutagenic when tested directly and moderately mutagenic with S-9 activation producing between 80 and 200 TA102 revertants/mg of compound. Mutagenicity was inhibited 25%-30% by FDH. TA102 revertants were also induced by TBA and by MTBE when human S-9 was substituted for rat S-9. We conclude that MTBE and its metabolites induce a mutagenic pathway involving oxidation of DNA bases and an intact repair system. These data are significant in view of the controversy surrounding public safety and the environmental release of MTBE and similar fuel additives.  相似文献   

19.
The peroxidative activation of the antitumor drugs, etoposide (VP-16) and teniposide (VM-26), has been studied in vitro. Both of these drugs, in the presence of horseradish peroxidase or prostaglandin synthetase, formed phenoxy radical intermediates. Furthermore, this activation also resulted in the formation of two metabolites from each of the drugs. Using HPLC and mass spectrometry, one of the metabolites was shown to be the reactive o-quinone derivative of the parent drug which resulted from the peroxidative O-demethylation. It appears that O-demethylation catalyzed by peroxidases may be an important mechanism for the formation of reactive intermediates and may play a role in the mechanism of action of VP-16 and VM-26.  相似文献   

20.
Some compounds naturally present in food (quercetin, beta-naphthoflavone), used as food additives (butylated hydroxytoluene, sodium sulfite) or resulting from the way they were cooked (2-aminodipyrido [1,2-a; 3', 2'-d] imidazole, norharmane) can interfere with AFB1 metabolism. These interferences have been studied in vitro by evaluating the production of adducts to glutathione and by the Ames test on Salmonella typhimurium. Whereas all compounds produced a drastic decrease of the mutagenic activity, the first three only (quercetin, beta-naphthoflavone, butylated hydroxytoluene) interfered with the production of the adducts to glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号