首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four bacterial strains (CA26, CA28, CA37, and CA45), which all were able to use aniline, 3-chloroaniline (3-CA), and 4-chloroaniline (4-CA) as sole sources of carbon, nitrogen and energy, were isolated after enrichment in aerated soil columns and identified as Pseudomonas acidovorans strains. In addition strains CA26 and CA45 were able to degrade 2-chloroaniline (2-CA) at very low rates. At 25°C strain CA28 was grown on aniline and 3-CA with generation times of 3.0 and 7.7 h, respectively, and exhibited complete mineralization of these substrates in degradation rates of 2.25 mmol aniline and 1.63 mmol 3-CA g-1 of biomass per hour, respectively. Degradation of 4-CA occurred at 1.54 mmol 4-CA g-1 of biomass per hour and a generation time of 18.7 h but, in contrast, was not complete due to formation of minor amounts of chlorohydroxymuconic semialdehyde, a meta-cleavage product of 4-chlorocatechol. The initial attack on the substrate, the formation of corresponding chlorocatechols from 3-CA and 4-CA, was found to be the rate-limiting degradation step. Evidence for two different aniline-oxygenase systems in strain CA28 with distinct activity pattern on chlorinated and nonsubstituted anilines was demonstrated by oxygen uptake rate experiments with aniline and chloroaniline pregrown cells. Further degradation was shown to be initialized by catechol dioxygenases.Non-standard abbreviations CA chloroaniline - DCA dichloroaniline - ECM enrichment and cultivation medium - CFU colony forming unit  相似文献   

2.
Pseudomonas cepacia strain CMA1, which was isolated from soil, utilized 3-chloro-4-methylaniline (3C4MA) in concentrations up to 1.4 mm (0.2 g·l–1) as the sole source of carbon, nitrogen, and energy. In addition, 3-chloroaniline, 4-chloroaniline and phenol, but not aniline or methylanilines, were degraded by strain CMA1. Biodegradation of the anilines was coupled to the liberation of ammonium and chloride. The broad specificities of the aniline- and catechol-oxidizing enzymes were demonstrated in oxygen uptake experiments, which in addition showed higher activities for ring-cleaving than for aniline-oxidizing enzymes. Two ring-cleaving catechol 1,2-dioxygenases, which were induced selectively after growth on 3C4MA (pyrocatechase type II) and phenol (pyrocatechase type I), respectively, were discerned after partial purification by DEAE-cellulose chromatography. Correspondence to: F. Streichsbier  相似文献   

3.
We examined the diversity of the plasmids and of the gene tdnQ, involved in the oxidative deamination of aniline, in five bacterial strains that are able to metabolize both aniline and 3-chloroaniline (3-CA). Three strains have been described and identified previously, i.e., Comamonas testosteroni I2 and Delftia acidovorans CA28 and BN3.1. Strains LME1 and B8c were isolated in this study from linuron-treated soil and from a wastewater treatment plant, respectively, and were both identified as D. acidovorans. Both Delftia and Comamonas belong to the family Comamonadaceae. All five strains possess a large plasmid of ca. 100 kb, but the plasmids from only four strains could be transferred to a recipient strain by selection on aniline or 3-CA as a sole source of carbon and/or nitrogen. Plasmid transfer experiments and Southern hybridization revealed that the plasmid of strain I2 was responsible for total aniline but not 3-CA degradation, while the plasmids of strains LME1 and B8c were responsible only for the oxidative deamination of aniline. Several transconjugant clones that had received the plasmid from strain CA28 showed different degradative capacities: all transconjugants could use aniline as a nitrogen source, while only some of the transconjugants could deaminate 3-CA. For all four plasmids, the IS1071 insertion sequence of Tn5271 was found to be located on a 1.4-kb restriction fragment, which also hybridized with the tdnQ probe. This result suggests the involvement of this insertion sequence element in the dissemination of aniline degradation genes in the environment. By use of specific primers for the tdnQ gene from Pseudomonas putida UCC22, the diversity of the PCR-amplified fragments in the five strains was examined by denaturing gradient gel electrophoresis (DGGE). With DGGE, three different clusters of the tdnQ fragment could be distinguished. Sequencing data showed that the tdnQ sequences of I2, LME1, B8c, and CA28 were very closely related, while the tdnQ sequences of BN3.1 and P. putida UCC22 were only about 83% identical to the other sequences. Northern hybridization revealed that the tdnQ gene is transcribed only in the presence of aniline and not when only 3-CA is present.  相似文献   

4.
A bacterial strain, AN3, which was able to use aniline or acetanilide as sole carbon, nitrogen and energy sources was isolated from activated sludge and identified as Delftiasp. AN3. This strain was capable of growing on concentrations of aniline up to 53.8 mM (5000 mg/l). Substituted anilines such as N-methylaniline, N, N-dimethylaniline, 2-methylaniline, 4-methylaniline, 2-chloroaniline, 3-chloroaniline, o-aminoaniline, m-aminoaniline, p-aminoaniline, and sulfanilic acid did not support the growth of strain AN3. The optimal temperature and pH for growth and degradation of aniline were 30 degrees C and 7.0, respectively. The activities of aniline dioxygenase, catechol 2,3-dioxygenase and other enzymes involved in aniline degradation were determined, and results indicated that all of them were inducible. The K (m) and V (max) of aniline dioxygenase were 0.29 mM and 0.043 mmol/mg protein/min, respectively. The K (m) and V (max) of catechol 2, 3-dioxygenase for catechol were 0.016 mM and 0.015 mmol/mg protein/min, respectively. Based on the results obtained, a pathway for the degradation of aniline by Delftiasp. AN3 was proposed. The importance of the strain to the operation of municipal wastewater treatment plants is discussed.  相似文献   

5.
Pseudomonas strain K1 is a gram-negative rod which grows aerobically on minimal media containing aniline with a doubling time of 2 h at 30°C. The half-saturation parameter for aniline metabolism by aniline-grown cells was 3.8 μmol · liter−1. Concentrations of aniline as low as 50 nM were metabolized. Neither substituted anilines nor other aromatic compounds (other than aromatic amino acids) supported growth. Cells grew as fast on aniline as on nonaromatic substrates such as lactate. The aromatic ring was cleaved via the meta pathway. Catechol 2,3-oxygenase activity was induced by aniline, even in cultures containing alternative carbon sources such as lactate. Cultures grown on a mixture of aniline and lactate mineralized aniline in the presence of the second substrate. Lactate-grown cultures lacked catechol oxygenase activity, and resting cells from these cultures did not respire aniline. Resting cells from aniline-grown cultures exhibited high respiratory activity upon the addition of aniline or catechol, some activity with toluidine, and no activity after addition of a wide variety of other aromatic compounds, including dihydroxybenzylamine, chloroanilines, ethylanilines, aminophenols, aminobenzoates, and dihydroxybenzoates. Although substituted anilines were not metabolized, 3-or 4-chloroaniline did induce the enzymes for aniline oxidation.  相似文献   

6.
4-Chloroaniline has been released into the environment due to extensive use in chemical industries and intensive agriculture; hence, it becomes one of the hazardous pollutants in the priority pollutant list. In this study, three gram-negative bacteria were enriched and isolated from agricultural soil as 4-chloroaniline-degrading bacteria. They were identified as Acinetobacter baumannii CA2, Pseudomonas putida CA16 and Klebsiella sp. CA17. They were able to utilize 4-chloroaniline as a sole carbon and nitrogen source without stimulation or cocultivation with aniline or another cosubstrate. The biodegradation in these bacteria was occurred via a modified ortho-cleavage pathway of which the activity of chlorocatechol 1, 2-dioxygenase was markedly induced. They grew well on 0.2-mM 4-chloroaniline exhibiting a 60-75% degradation efficiency and equimolar liberation of chloride. The isolates were able to survive in the presence of 4-chloroaniline at higher concentrations (up to 1.2 mM). 2-Chloroaniline, 3-chloroaniline and aniline, but not 3, 4-dichloroaniline, were also growth substrates for these isolates. The results of cosubstrate supplementation illustrated the suitable conditions of each isolate to improve growth rate and 4-chloroaniline biodegradation efficiency. These results suggest that these isolates have a potential use for bioremediation of the site contaminated with 4-chloroaniline.  相似文献   

7.
食酸丛毛单胞菌AN3菌株降解苯胺代谢途径的研究   总被引:7,自引:0,他引:7  
食酸丛毛单胞菌(\%Comamonas acidovorans\%)AN3菌株中降解苯胺的酶类均为诱导酶,在以苯胺为唯一碳、氮源和能源生长的细胞中,含有苯胺双加氧酶、邻苯二酚2,3双加氧酶、2羟基己二烯半醛酸脱氢酶、4草酰巴豆酸脱羧酶和4羟基2酮戊酸醛缩酶等。苯胺双加氧酶作用于苯胺的\%K\%m值和\%V\%\-\{max\}分别为292μmol/L和3.57μmol\5mg\+\{-1\}·min-1;邻苯二酚2,3双加氧酶作用于邻苯二酚的\%K\%m和\%V\%\-\{max\}分别为16.4 mol/L和15.2μmol\5mg\+\{-1\}\5min\+\{-1\}。根据实验结果,推测了该菌株降解苯胺的代谢途径。  相似文献   

8.
Summary Pseudomonas multivorans strain An 1 used aniline but not chloroanilines as the sole source of carbon and energy for growth. The aniline-adapted cells, however, were able to oxygenate chloroanilines. Relative oxygenation rates for aniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline, and 3,4-dichloroaniline were 100, 46, 66, 20, and 3%, respectively.The first intermediates in the metabolism of chloroanilines were chlorocatechols. 3-Chlorocatechol accumulated during growth of the organism in the presence of 2-chloroaniline, whereas 4-chlorocatechol was an intermediate metabolite of 3-chloroaniline and 4-chloroaniline.Chloroanilines were able to induce synthesis of the aniline oxygenating enzyme system of Pseudomonas multivorans strain An 1. In continuous culture experiments, induction of this enzyme system appeared to depend on cell density, concentration, toxicity, and pK-values of aniline or chloroanilines.Studies with 14C-labelled 3-chloroaniline and 4-chloroaniline showed that the turnover of chloroanilines did not cease with the formation of chlorocatechols, because radioactivity was detected in the CO2 released and in bacterial cell components. The results suggest that the turnover of chloroanilines is due to metabolism rather than to cometabolism.  相似文献   

9.
Moraxella sp. strain G is able to utilize as sole source of carbon and nitrogen aniline, 4-fluoroaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline (PCA), and 4-bromoaniline but not 4-iodoaniline, 4-methylaniline, 4-methoxyaniline, or 3,4-dichloroaniline. The generation time on PCA was 6 h. The pathway for the degradation of PCA was investigated by analysis of catabolic intermediates and enzyme activities. Mutants of strain G were isolated to enhance the accumulation of specific pathway intermediates. PCA was converted by an aniline oxygenase to 4-chlorocatechol, which in turn was degraded via a modified ortho-cleavage pathway. Synthesis of the aniline oxygenase was inducible by various anilines. This enzyme exhibited a broad substrate specificity. Its specific activity towards substituted anilines seemed to be correlated more with the size than with the electron-withdrawing effect of the substituent and was very low towards anilines having substituents larger than iodine or a methyl group. The initial enzyme of the modified ortho-cleavage pathway, catechol 1,2-dioxygenase, had similar characteristics to those of corresponding enzymes of pathways for the degradation of chlorobenzoic acid and chlorophenol, that is, a broad substrate specificity and high activity towards chlorinated and methylated catechols.  相似文献   

10.
Moraxella sp. strain G is able to utilize as sole source of carbon and nitrogen aniline, 4-fluoroaniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline (PCA), and 4-bromoaniline but not 4-iodoaniline, 4-methylaniline, 4-methoxyaniline, or 3,4-dichloroaniline. The generation time on PCA was 6 h. The pathway for the degradation of PCA was investigated by analysis of catabolic intermediates and enzyme activities. Mutants of strain G were isolated to enhance the accumulation of specific pathway intermediates. PCA was converted by an aniline oxygenase to 4-chlorocatechol, which in turn was degraded via a modified ortho-cleavage pathway. Synthesis of the aniline oxygenase was inducible by various anilines. This enzyme exhibited a broad substrate specificity. Its specific activity towards substituted anilines seemed to be correlated more with the size than with the electron-withdrawing effect of the substituent and was very low towards anilines having substituents larger than iodine or a methyl group. The initial enzyme of the modified ortho-cleavage pathway, catechol 1,2-dioxygenase, had similar characteristics to those of corresponding enzymes of pathways for the degradation of chlorobenzoic acid and chlorophenol, that is, a broad substrate specificity and high activity towards chlorinated and methylated catechols.  相似文献   

11.
Pseudomonas acidovorans and Pseudomonas sp. strain ANL but not Salmonella typhimurium grew in an inorganic salts solution. The growth of P. acidovorans in this solution was not enhanced by the addition of 2.0 micrograms of phenol per liter, but the phenol was mineralized. Mineralization of 2.0 micrograms of phenol per liter by P. acidovorans was delayed 16 h by 70 micrograms of acetate per liter, and the delay was lengthened by increasing acetate concentrations, whereas phenol and acetate were utilized simultaneously at concentrations of 2.0 and 13 micrograms/liter, respectively. Growth of Pseudomonas sp. in the inorganic salts solution was not affected by the addition of 3.0 micrograms each of glucose and aniline per liter, nor was mineralization of the two compounds detected during the initial period of growth. However, mineralization of both substrates by this organism occurred simultaneously during the latter phases of growth and after growth had ended at the expense of the uncharacterized dissolved organic compounds in the salts solution. In contrast, when Pseudomonas sp. was grown in the salts solution supplemented with 300 micrograms each of glucose and aniline, the sugar was mineralized first, and aniline was mineralized only after much of the glucose carbon was converted to CO2. S. typhimurium failed to multiply in the salts solution with 1.0 micrograms of glucose per liter. It grew slightly but mineralized little of the sugar at 5.0 micrograms/liter, but its population density rose at 10 micrograms of glucose per liter or higher. The hexose could be mineralized at 0.5 micrograms/liter, however, if the solution contained 5.0 mg of arabinose per liter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Pseudomonas acidovorans and Pseudomonas sp. strain ANL but not Salmonella typhimurium grew in an inorganic salts solution. The growth of P. acidovorans in this solution was not enhanced by the addition of 2.0 micrograms of phenol per liter, but the phenol was mineralized. Mineralization of 2.0 micrograms of phenol per liter by P. acidovorans was delayed 16 h by 70 micrograms of acetate per liter, and the delay was lengthened by increasing acetate concentrations, whereas phenol and acetate were utilized simultaneously at concentrations of 2.0 and 13 micrograms/liter, respectively. Growth of Pseudomonas sp. in the inorganic salts solution was not affected by the addition of 3.0 micrograms each of glucose and aniline per liter, nor was mineralization of the two compounds detected during the initial period of growth. However, mineralization of both substrates by this organism occurred simultaneously during the latter phases of growth and after growth had ended at the expense of the uncharacterized dissolved organic compounds in the salts solution. In contrast, when Pseudomonas sp. was grown in the salts solution supplemented with 300 micrograms each of glucose and aniline, the sugar was mineralized first, and aniline was mineralized only after much of the glucose carbon was converted to CO2. S. typhimurium failed to multiply in the salts solution with 1.0 micrograms of glucose per liter. It grew slightly but mineralized little of the sugar at 5.0 micrograms/liter, but its population density rose at 10 micrograms of glucose per liter or higher. The hexose could be mineralized at 0.5 micrograms/liter, however, if the solution contained 5.0 mg of arabinose per liter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
A total of 39 phenol- and p-cresol-degraders isolated from the river water continuously polluted with phenolic compounds of oil shale leachate were studied. Species identification by BIOLOG GN analysis revealed 21 strains of Pseudomonas fluorescens (4, 8 and 9 of biotypes A, C and G, respectively), 12 of Pseudomonas mendocina, four of Pseudomonas putida biotype A1, one of Pseudomonas corrugata and one of Acinetobacter genospecies 15. Computer-assisted analysis of rep-PCR fingerprints clustered the strains into groups with good concordance with the BIOLOG GN data. Three main catabolic types of degradation of phenol and p-cresol were revealed. Type I, or meta-meta type (15 strains), was characterized by meta cleavage of catechol by catechol 2,3-dioxygenase (C23O) during the growth on phenol and p-cresol. These strains carried C23O genes which gave PCR products with specific xylE-gene primers. Type II, or ortho-ortho type (13 strains), was characterized by the degradation of phenol through ortho fission of catechol by catechol 1,2-dioxygenase (C12O) and p-cresol via ortho cleavage of protocatechuic acid by protocatechuate 3,4-dioxygenase (PC34O). These strains carried phenol monooxygenase gene which gave PCR products with pheA-gene primers. Type III, or meta-ortho type (11 strains), was characterized by the degradation of phenol by C23O and p-cresol via the protocatechuate ortho pathway by the induction of PC34O and this carried C23O genes which gave PCR products with C23O-gene primers, but not with specific xylE-gene primers. In type III strains phenol also induced the p-cresol protocatechuate pathway, as revealed by the induction of p-cresol methylhydroxylase. These results demonstrate multiplicity of catabolic types of degradation of phenol and p-cresol and the existence of characteristic assemblages of species and specific genotypes among the strains isolated from the polluted river water.  相似文献   

15.
Induction of modified ortho-pathway enzymes (catechol 1.2-dioxygenase II, muconate cycloisomerase II, dienelactone hydrolase, and maleylacetate reductase) was found in Pseudomonas putida 87, when 3-chlorobenzoic acid was used as a sole carbon and energy source. Catechol 1.2-dioxygenase II, the key chlorocatechol cleaving enzyme, was purified and characterized. The enzyme molecular mass as determined by gel filtration was 65,000 Da; the minimum molecular mass upon SDS electrophoresis was 33,000 Da. The pH and temperature optima for the enzyme were 7.2-7.8 and 35 degrees C, respectively. The highest stability of catechol 1.2-dioxygenase II upon storage was observed in 50 mM Tris-HCl buffer pH 7.8 at 4 degrees C. The relative values of Vmax for catechol 1.2-dioxygenase II with 3-chloro-, 4-chloro-, and 3.5-dichlorocatechols were 28%, 50%, and 41% of those for catechol. The enzyme affinity for chlorocatechols was 3-9 times higher than for methylcatechols and 10-20 times higher than for unsubstituted catechol.  相似文献   

16.
We have characterized a novel microorganism, strain HY99, which is capable of aerobic and anaerobic degradation of aniline. Strain HY99 was found to aerobically metabolize aniline via catechol and 2-hydroxymuconic semialdehyde intermediates, and to transform aniline via p-aminobenzoate in anaerobic environments. Physiological and biochemical tests revealed that strain HY99 was most similar to Delftia acidovorans, but unlike D. acidovorans, strain HY99 was able to metabolize aniline under anaerobic conditions linked with nitrate reduction. Phylogenetic analysis based on 16S rDNA sequencing also revealed that strain HY99 was closely related to D. acidovorans, with 96% overall similarity.  相似文献   

17.
从某农药厂二沉池污泥中筛选分离得到两株革兰氏阴性的芳香烃降解菌ZD41和ZD43。经鉴定,它们分别属于Comamonas testosteroniPseudomonas aeruginosa。基于16S rDNA 序列的系统分类分析,结果表明,在分类地位上菌株ZD41和ZD43 分别属于两个不同的分类亚组。苯酚降解产物紫外光谱扫描和双加氧酶检测证明,菌株ZD41利用邻裂途径降解苯酚,而ZD43则通过间裂途径降解苯酚,邻裂途径的1,2双加氧酶和间裂途径的2,3双加氧酶都是可诱导的双加氧酶,其活性强烈的依赖于降解底物的出现。芳香烃降解试验结果表明,邻裂和间裂两种途径的降解性能不一样,虽然ZD43降解苯酚的效率要高于菌株ZD41,但是ZD41降解苯酚的pH值范围以及芳烃利用基质谱宽于后者。  相似文献   

18.
We examined the diversity of the plasmids and of the gene tdnQ, involved in the oxidative deamination of aniline, in five bacterial strains that are able to metabolize both aniline and 3-chloroaniline (3-CA). Three strains have been described and identified previously, i.e., Comamonas testosteroni I2 and Delftia acidovorans CA28 and BN3.1. Strains LME1 and B8c were isolated in this study from linuron-treated soil and from a wastewater treatment plant, respectively, and were both identified as D. acidovorans. Both Delftia and Comamonas belong to the family Comamonadaceae. All five strains possess a large plasmid of ca. 100 kb, but the plasmids from only four strains could be transferred to a recipient strain by selection on aniline or 3-CA as a sole source of carbon and/or nitrogen. Plasmid transfer experiments and Southern hybridization revealed that the plasmid of strain I2 was responsible for total aniline but not 3-CA degradation, while the plasmids of strains LME1 and B8c were responsible only for the oxidative deamination of aniline. Several transconjugant clones that had received the plasmid from strain CA28 showed different degradative capacities: all transconjugants could use aniline as a nitrogen source, while only some of the transconjugants could deaminate 3-CA. For all four plasmids, the IS1071 insertion sequence of Tn5271 was found to be located on a 1.4-kb restriction fragment, which also hybridized with the tdnQ probe. This result suggests the involvement of this insertion sequence element in the dissemination of aniline degradation genes in the environment. By use of specific primers for the tdnQ gene from Pseudomonas putida UCC22, the diversity of the PCR-amplified fragments in the five strains was examined by denaturing gradient gel electrophoresis (DGGE). With DGGE, three different clusters of the tdnQ fragment could be distinguished. Sequencing data showed that the tdnQ sequences of I2, LME1, B8c, and CA28 were very closely related, while the tdnQ sequences of BN3.1 and P. putida UCC22 were only about 83% identical to the other sequences. Northern hybridization revealed that the tdnQ gene is transcribed only in the presence of aniline and not when only 3-CA is present.  相似文献   

19.
1. Two catechol 1,2-dioxygenases, pyrocatechase I and pyrocatechase II, were found in 3-chlorobenzoate-grown cells of Pseudomonas sp. B 13. The latter enzyme showed high relative activities with 3- and 4-chlorocatechol compared with catechol. 2. In benzoate-grown cells, only pyrocatechase I was induced. It was purified 29-fold with a final specific activity of 20 mumol of catechol oxygenated/min per mg of protein and an overall yield of 22%. Because of the instability of pyrocatechase II on chromatography and dialysis, no increase of specific activity was obtained during the purification experiments. 3. Molecular weights of pyrocatechase I and pyrocatechase II were 82000 and 67000 respectively. 4. For both pyrocatechases the pH optimum was found to be at 8.0.5. Inhibitions of the two pyrocatechases by Cu2+ and Hg2+ ions and p-chloromercuribenzoate were different. The effect on pyrocatechase I after incubation for 20 h with the heavy metals was decreased by addition of 1 mM-2-mercaptoethanol to the reaction mixture. The inhibition of pyrocatechase II was even enhanced under these conditions. 6. Extradiol cleavage of 3-methylcatechol in addition to intradiol fission at a ratio of 1:14 was observed only with pyrocatechase I.  相似文献   

20.
The enzymes involved in the degradation of phenol by a new soil bacterium referred as Pseudomonas sp. strain phDV1 were characterized. The key enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway, catechol 2,3-dioxygenase (C23O), was isolated using sucrose density centrifugation and anion exchange chromatography. The purified C23O was detected and identified by absorption spectroscopy and peptide mapping. Further, the Pseudomonas sp. strain phDV1 proteome was monitored under different growth substrate conditions, using glucose or phenol as sole carbon and energy source. Sucrose density centrifugation was used to collect and concentrate the cell fraction exhibiting C23O activity and to reduce the complexity of the total protein mixture. 1-DE Tricine PAGE electrophoresis separation in combination with MALDI-TOF MS was attempted for the identification of the proteins involved in the metabolic pathway. We found a different expression of 19 proteins depending on the growth substrate (phenol or glucose) and 10 were identified as enzymes involved in the phenol degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号