共查询到20条相似文献,搜索用时 15 毫秒
1.
McPherson DC Kim H Hahn M Wang R Grabowski P Eichenberger P Driks A 《Journal of bacteriology》2005,187(24):8278-8290
Bacillus spores are protected by a structurally and biochemically complex protein shell composed of over 50 polypeptide species, called the coat. Coat assembly in Bacillus subtilis serves as a relatively tractable model for the study of the formation of more complex macromolecular structures and organelles. It is also a critical model for the discovery of strategies to decontaminate B. anthracis spores. In B. subtilis, a subset of coat proteins is known to have important roles in assembly. Here we show that the recently identified B. subtilis coat protein CotO (YjbX) has an especially important morphogenetic role. We used electron and atomic force microscopy to show that CotO controls assembly of the coat layers and coat surface topography as well as biochemical and cell-biological analyses to identify coat proteins whose assembly is CotO dependent. cotO spores are defective in germination and partially sensitive to lysozyme. As a whole, these phenotypes resemble those resulting from a mutation in the coat protein gene cotH. Nonetheless, the roles of CotH and CotO and the proteins whose assembly they direct are not identical. Based on fluorescence and electron microscopy, we suggest that CotO resides in the outer coat (although not on the coat surface). We propose that CotO and CotH participate in a late phase of coat assembly. We further speculate that an important role of these proteins is ensuring that polymerization of the outer coat layers occurs in such a manner that contiguous shells, and not unproductive aggregates, are formed. 相似文献
2.
The Bacillus subtilis spore is encased in a resilient, multilayered proteinaceous shell, called the coat, that protects it from the environment. A 181-amino-acid coat protein called CotE assembles into the coat early in spore formation and plays a morphogenetic role in the assembly of the coat's outer layer. We have used a series of mutant alleles of cotE to identify regions involved in outer coat protein assembly. We found that the insertion of a 10-amino-acid epitope, between amino acids 178 and 179 of CotE, reduced or prevented the assembly of several spore coat proteins, including, most likely, CotG and CotB. The removal of 9 or 23 of the C-terminal-most amino acids resulted in an unusually thin outer coat from which a larger set of spore proteins was missing. In contrast, the removal of 37 amino acids from the C terminus, as well as other alterations between amino acids 4 and 160, resulted in the absence of a detectable outer coat but did not prevent localization of CotE to the forespore. These results indicate that changes in the C-terminal 23 amino acids of CotE and in the remainder of the protein have different consequences for outer coat protein assembly. 相似文献
3.
When challenged by stresses such as starvation, the soil bacterium Bacillus subtilis produces an endospore surrounded by a proteinaceous coat composed of >70 proteins that are organized into three main layers: an amorphous undercoat, lightly staining lamellar inner coat and electron-dense outer coat. This coat protects the spore against a variety of chemicals or lysozyme. Mutual interactions of the coat's building blocks are responsible for the formation of this structurally complex and extraordinarily resistant shell. However, the assembly process of spore coat proteins is still poorly understood. In the present work, the main focus is on the three spore coat morphogenetic proteins: SpoIVA, SpoVID and SafA. Direct interaction between SpoIVA and SpoVID proteins was observed using a yeast two-hybrid assay and verified by coexpression experiment followed by Western blot analysis. Coexpression experiments also confirmed previous findings that SpoVID and SafA directly interact, and revealed a novel interaction between SpoIVA and SafA. Moreover, gel filtration analysis revealed that both SpoIVA and SpoVID proteins form large oligomers. 相似文献
4.
A novel small protein of Bacillus subtilis involved in spore germination and spore coat assembly 总被引:1,自引:0,他引:1
Kodama T Matsubayashi T Yanagihara T Komoto H Ara K Ozaki K Kuwana R Imamura D Takamatsu H Watabe K Sekiguchi J 《Bioscience, biotechnology, and biochemistry》2011,75(6):1119-1128
Two small genes named sscA (previously yhzE) and orf-62, located in the prsA-yhaK intergenic region of the Bacillus subtilis genome, were transcribed by SigK and GerE in the mother cells during the later stages of sporulation. The SscA-FLAG fusion protein was produced from T(5) of sporulation and incorporated into mature spores. sscA mutant spores exhibited poor germination, and Tricine-SDS-PAGE analysis showed that the coat protein profile of the mutant differed from that of the wild type. Bands corresponding to proteins at 59, 36, 5, and 3 kDa were reduced in the sscA null mutant. Western blot analysis of anti-CotB and anti-CotG antibodies showed reductions of the proteins at 59 kDa and 36 kDa in the sscA mutant spores. These proteins correspond to CotB and CotG. By immunoblot analysis of an anti-CotH antibody, we also observed that CotH was markedly reduced in the sscA mutant spores. It appears that SscA is a novel spore protein involved in the assembly of several components of the spore coat, including CotB, CotG, and CotH, and is associated with spore germination. 相似文献
5.
Zilhão R Naclerio G Henriques AO Baccigalupi L Moran CP Ricca E 《Journal of bacteriology》1999,181(8):2631-2633
We report Western blot data showing that the 42.8-kDa product of the previously characterized cotH locus (8) is a structural component of the Bacillus subtilis spore coat. We show that the assembly of CotH requires both CotE and GerE. In agreement with these observations, the ultrastructural analysis of purified spores suggests that CotH is needed for proper formation of both inner and outer layers of the coat. 相似文献
6.
About 70% of the protein in isolated Bacillus subtilis spore coats was solubilized by treatment with a combination of reducing and denaturing agents at alkaline pH. The residue, consisting primarily of protein, was insoluble in a variety of reagents. The soluble proteins were resolved into at least seven bands by sodium dodecyl sulfate gel electrophoresis. About one-half of the total was four proteins of 8,000 to 12,000 daltons. These were relatively tyrosine rich, and one was a glycoprotein. There was also a cluster of proteins of about 40,000 daltons and two or three in the 20,000- to 25,000-dalton range. The insoluble fraction had an amino acid composition and N-terminal pattern of amino acids very similar to those of the soluble coat proteins. A major difference was the presence of considerable dityrosine in performic acid-oxidized preparations of insoluble coats. Coat antigen including a 60,000-dalton protein not present in extracts of mature spores was detected in extracts of sporulating cells by immunoprecipitation. This large antigen turned over in a pulse-chase experiment. Antibodies to either the array of 8,000- to 12,000-dalton coat polypeptides or to the larger coat proteins reacted with this 60,000-dalton species, suggesting a common precursor for many of the mature coat polypeptides. Spore coats seem to be assembled by processing of proteins and by secondary modifications including perhaps dityrosine formation for cross-linking. 相似文献
7.
8.
Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ
下载免费PDF全文

The Bacillus subtilis spore coat protein GerQ is necessary for the proper localization of CwlJ, an enzyme important in the hydrolysis of the peptidoglycan cortex during spore germination. GerQ is cross-linked into high-molecular-mass complexes in the spore coat late in sporulation, and this cross-linking is largely due to a transglutaminase. This enzyme forms an epsilon-(gamma-glutamyl) lysine isopeptide bond between a lysine donor from one protein and a glutamine acceptor from another protein. In the current work, we have identified the residues in GerQ that are essential for transglutaminase-mediated cross-linking. We show that GerQ is a lysine donor and that any one of three lysine residues near the amino terminus of the protein (K2, K4, or K5) is necessary to form cross-links with binding partners in the spore coat. This leads to the conclusion that all Tgl-dependent GerQ cross-linking takes place via these three lysine residues. However, while the presence of any of these three lysine residues is essential for GerQ cross-linking, they are not essential for the function of GerQ in CwlJ localization. 相似文献
9.
Bacteria assemble complex structures by targeting proteins to specific subcellular locations. The protein coat that encases Bacillus subtilis spores is an example of a structure that requires coordinated targeting and assembly of more than 24 polypeptides. The earliest stages of coat assembly require the action of three morphogenetic proteins: SpoIVA, CotE, and SpoVID. In the first steps, a basement layer of SpoIVA forms around the surface of the forespore, guiding the subsequent positioning of a ring of CotE protein about 75 nm from the forespore surface. SpoVID localizes near the forespore membrane where it functions to maintain the integrity of the CotE ring and to anchor the nascent coat to the underlying spore structures. However, it is not known which spore coat proteins interact directly with SpoVID. In this study we examined the interaction between SpoVID and another spore coat protein, SafA, in vivo using the yeast two-hybrid system and in vitro. We found evidence that SpoVID and SafA directly interact and that SafA interacts with itself. Immunofluorescence microscopy showed that SafA localized around the forespore early during coat assembly and that this localization of SafA was dependent on SpoVID. Moreover, targeting of SafA to the forespore was also dependent on SpoIVA, as was targeting of SpoVID to the forespore. We suggest that the localization of SafA to the spore coat requires direct interaction with SpoVID. 相似文献
10.
11.
Endospores of Bacillus subtilis are encased in a thick, proteinaceous shell known as the coat, which is composed of a large number of different proteins. Here we report the identification of three previously uncharacterized coat-associated proteins, YabP, YheD, and YutH, and their patterns of subcellular localization during the process of sporulation, obtained by using fusions of the proteins to the green fluorescent protein (GFP). YabP-GFP was found to form both a shell and a ring around the center of the forespore across the short axis of the sporangium. YheD-GFP, in contrast, formed two rings around the forespore that were offset from its midpoint, before it eventually redistributed to form a shell around the developing spore. Finally, YutH-GFP initially localized to a focus at one end of the forespore, which then underwent transformation into a ring that was located adjacent to the forespore. Next, the ring became a cap at the mother cell pole of the forespore that eventually spread around the entire developing spore. Thus, each protein exhibited its own distinct pattern of subcellular localization during the course of coat morphogenesis. We concluded that spore coat assembly is a dynamic process involving diverse patterns of protein assembly and localization. 相似文献
12.
Appearance of spore coat protein in the cell extracts of Bacillus subtilis asporogenic mutants.
下载免费PDF全文

By use of the antigen-antibody techniques we have studied whether asporogenic mutants of Bacillus subtilis can synthesize the spore coat protein. Antibody specific to spore coat protein was prepared and used to demonstrate that the spore coat protein was synthesized at the early stage of sporulation. We report here that asporogenic mutants synthesize the spore coat protein. 相似文献
13.
Isticato R Pelosi A Zilhão R Baccigalupi L Henriques AO De Felice M Ricca E 《Journal of bacteriology》2008,190(4):1267-1275
We report evidence that CotC and CotU, two previously identified components of the Bacillus subtilis spore coat, are produced concurrently in the mother cell chamber of the sporulating cell under the control of σK and GerE and immediately assembled around the forming spore. In the coat, the two proteins interact to form a coat component of 23 kDa. The CotU-CotC interaction was not detected in two heterologous hosts, suggesting that it occurs only in B. subtilis. Monomeric forms of both CotU and CotC failed to be assembled at the surface of the developing spore and accumulated in the mother cell compartment of cells mutant for cotE. In contrast, neither CotU nor CotC accumulated in the mother cell compartment of cells mutant for cotH. These results suggest that CotH is required to protect both CotU and CotC in the mother cell compartment of the sporangium and that CotE is needed to allow their assembly and subsequent interaction at the spore surface. 相似文献
14.
Kakeshita H Takamatsu H Amikura R Nakamura K Watabe K Yamane K 《FEMS microbiology letters》2001,195(1):41-46
Bacillus subtilis FtsY is a homolog of the alpha-subunit of mammalian signal recognition particle (SRP) receptor, and is essential for protein translocation and vegetative cell growth. An FtsY conditional null mutant (strain ISR39) can express ftsY during the vegetative stage but not during spore formation. Spores of ISR39 have the same resistance to heat and chloroform as the wild-type, while their resistance to lysozyme is reduced. Electron microscopy showed that the outer coat of spores was incompletely assembled. The coat protein profile of the ftsY mutant spores was different from that of wild-type spores. The amounts of CotA, and CotE were reduced in spore coat proteins of ftsY mutant spores and the molecular mass of CotB was reduced. In addition, CotA, CotB, and CotE are present in normal form at T(8) of sporulation in ftsY mutant cells. These results suggest that FtsY has a pivotal role in assembling coat proteins onto the coat layer during spore morphogenesis. 相似文献
15.
16.
A I Aronson 《Journal of bacteriology》1981,145(1):541-547
The major structural protein of Bacillus cereus spore coats was synthesized, commencing 1 to 2 h after the end of exponential growth, as a precursor with a mass of ca. 65,000 daltons. About 40% of this precursor, i.e. 26,000 daltons, was converted to spore coat monomers of 13,000 daltons each, perhaps as disulfide-linked dimers. The rate of conversion varied, being initially slow, most rapid at the time of morphogenesis of the coat layers, and then slow again late in sporulation, coincident with a decrease in intracellular protease activity. There was a second major spore coat polypeptide of about 26,000 daltons that was extractable from mature spores in variable amounts. This protein had a peptide profile and a reactivity with spore coat protein antibody that were very similar to those of the 13,000-dalton monomers. It is probably a disulfide-linked dimer that is not readily dissociated. 相似文献
17.
An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis. 总被引:2,自引:4,他引:2
下载免费PDF全文

We describe the identification and characterization of a gene, herein designated cotG, encoding an abundant coat protein from the spores of Bacillus subtilis. The cotG open reading frame is 195 codons in length and is capable of encoding a polypeptide of 24 kDa that contains nine tandem copies of the 13-amino-acid long, approximately repeated sequence H/Y-K-K-S-Y-R/C-S/T-H/Y-K-K-S-R-S. cotG is located at 300 degrees on the genetic map close to another coat protein gene, cotB. The cotG and cotB genes are in divergent orientation and are separated by 1.3 kb. Like the promoter for cotB, the cotG promoter is induced at a late stage of sporulation under the control of the RNA polymerase sigma factor sigma K and the DNA-binding protein GerE. The -10 and -35 nucleotide sequences of the cotG promoter resemble those of other promoters recognized by sigma K-containing RNA polymerase, and centered 70 bp upstream of the apparent start site is a sequence that matches the consensus binding site for GerE. Spore coat proteins from a newly constructed cotG null mutant lack not only CotG but also CotB, a finding that suggests that CotG may be a morphogenetic protein that is required for the incorporation of CotB into the coat. 相似文献
18.
G Naclerio L Baccigalupi R Zilhao M De Felice E Ricca 《Journal of bacteriology》1996,178(15):4375-4380
Endospores of Bacillus subtilis are encased in a protein shell, known as the spore coat, composed of a lamella-like inner layer and an electron-dense outer layer. We report the identification and characterization of a gene, herein called cotH, located at 300 degrees on the B. subtilis genetic map between two divergent cot genes, cotB and cotG. The cotH open reading frame extended for 1,086 bp and corresponded to a polypeptide of 42.8 kDa. Spores of a cotH null mutant were normally heat, lysozyme, and chloroform resistant but were impaired in germination. The mutant spores were also pleiotropically deficient in several coat proteins, including the products of the previously cloned cotB, -C, and -G genes. On the basis of the analysis of a cotE cotH double mutant, we infer that CotH is probably localized in the inner coat and is involved in the assembly of several proteins in the outer layer of the coat. 相似文献
19.
Sporulation in Bacillus subtilis. Properties and time of synthesis of alkali-soluble protein of the spore coat 总被引:9,自引:0,他引:9
下载免费PDF全文

D. A. Wood 《The Biochemical journal》1972,130(2):505-514
An alkali-extractable protein fraction comprising 6% of the dry weight of the spore can be removed from spores of Bacillus subtilis 168. Three different extraction procedures each yield at least one similar protein. Extracted protein behaved as a single species on ion-exchange chromatography or gel filtration, but two polypeptides were found on electrophoresis. Comparison of molecular weights on electrophoresis and by sucrosegradient analysis suggests that the protein(s) undergo aggregation into multimers. Extracted spores remain viable, but are altered in density and lysozyme sensitivity and they aggregate together. Electron microscopy of extracted spores shows that loss of material seems to occur from the outer coat layers. Extraction therefore probably removes a specific fraction of the spore-coat protein, but without impairment to the spore protoplast. This protein can first be detected immunologically 4h after the initiation of sporulation, and the synthesis of this protein is sensitive to chloramphenicol, actinomycin D and rifamycin. Labelling experiments also show that the protein begins to be synthesized early in sporulation. Examination of the ability of asporogenous mutants to produce cross-reacting material indicates that some event in stage II of sporulation determines its production. 相似文献
20.
Cascade regulation of spore coat gene expression in Bacillus subtilis. 总被引:23,自引:0,他引:23