首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Olduvai Hominid 8 (OH 8), an articulating set of fossil hominin tarsal and metatarsal bones, is critical to interpretations of the evolution of hominin pedal morphology and bipedal locomotion. It has been suggested that OH 8 may represent the foot of a subadult and may be associated with the OH 7 mandible, the type specimen of Homo habilis. This assertion is based on the presence of what may be unfused distal metatarsal epiphyses. Accurately assessing the skeletal maturity of the OH 8 foot is important for interpretations of the functional morphology and locomotor behavior of Plio-Pleistocene hominins. In this study, we compare metatarsal fusion patterns and internal bone morphology of the lateral metatarsals among subadult hominines (85 modern humans, 48 Pan, and 25 Gorilla) to assess the likelihood that OH 8 belonged to either an adult or subadult hominin. Our results suggest that if OH 8 is indeed from a subadult, then it displays a metatarsal developmental pattern that is unobserved in our comparative sample. In OH 8, the fully fused base of the first metatarsal and the presence of trabecular bone at the distal ends of the second and third metatarsal shafts make it highly improbable that it belonged to a subadult, let alone a subadult that matches the developmental age of the OH 7 mandible. In total, the results of this study suggest that the OH 8 foot most likely belonged to an adult hominin.  相似文献   

2.
This study examines radiographs of first metatarsals of 131 individuals from age 17-88 years to determine whether internal basal epiphyseal lines may be visible past the age of metatarsal fusion, which usually occurs between 14 and 16 years of age (Scheuer and Black: The juvenile skeleton. San Diego: Elsevier Academic Press,2004). In 29% (38 out of 131) of the radiographed first metatarsals (MT1s) the basal epiphyseal scar is visible, including in one individual who was 80 years old. Statistically, there was no relationship between the loss of the epiphyseal scar and age. Thus, the presence of the epiphyseal scar does not necessarily indicate subadult age. These data suggest that OH 8's radiographically visible basal epiphyseal line has no bearing on whether it is a subadult or not.  相似文献   

3.
Elizabeth Weiss 《HOMO》2012,63(1):1-11
Olduvai Hominin (OH) 8, a 1.76 million year old left foot skeleton, has osteophytic lipping on the metatarsal bases, which when compared to a modern sample, may help paleoanthropologists determine whether the foot bones represent an injured subadult or an osteoarthritic adult. This study compares the OH 8 lipping pattern to those of 140 individual Amerindians comprising four different age classes to determine whether the OH 8 lipping is likely to be age-related osteoarthritis. OH 8 metatarsal lipping followed a pattern similar to that determined in the comparative sample to be age-related osteoarthritis. Similarities include metatarsal base lipping that is frequently located on the dorsal surface, metatarsal base lipping that is more severe on the lateral metatarsals compared to the medial metatarsals, and the presence of a pseudojoint between metatarsal 1 and metatarsal 2. The chance of finding an individual with osteoarthritis lipping increases from 3.45% in the age group 18–22 years to 55% in individuals over 35 years. The chance of finding a pseudojoint increases from 1.32% in non-osteoarthritic individuals to 15.15% in individuals with osteoarthritis. Results from this study indicate that the OH 8 foot bones are most likely from an adult and more likely to belong to Paranthropus boisei, the skull of which was found in the same excavations with OH 8, than to the juvenile Homo habilis holotype.  相似文献   

4.
The functional anatomy of the hominin foot has played a crucial role in studies of locomotor evolution in human ancestors and extinct relatives. However, foot fossils are rare, often isolated, and fragmentary. Here, we describe a complete hominin second metatarsal (StW 89) from the 2.0-2.6 million year old deposits of Member 4, Sterkfontein Cave, South Africa. Like many other fossil foot bones, it displays a mosaic of derived human-like features and primitive ape-like features. StW 89 possesses a domed metatarsal head with a prominent sulcus, indicating dorsiflexion at the metatarsophalangeal joint during bipedal walking. However, while the range of motion at the metatarsophalangeal joint is human-like in dorsiflexion, it is ape-like in plantarflexion. Furthermore, StW 89 possesses internal torsion of the head, an anatomy decidedly unlike that found in humans today. Unlike other hominin second metatarsals, StW 89 has a dorsoplantarly gracile base, perhaps suggesting more midfoot laxity. In these latter two anatomies, the StW 89 second metatarsal is quite similar to the recently described second metatarsal of the partial foot from Burtele, Ethiopia. We interpret this combination of anatomies as evidence for a low medial longitudinal arch in a foot engaged in both bipedal locomotion, but also some degree of pedal, and perhaps even hallucal, grasping. Additional fossil evidence will be required to determine if differences between this bone and other second metatarsals from Sterkfontein reflect normal variation in an evolving lineage, or taxonomic diversity.  相似文献   

5.
This paper presents and describes new foot fossils from the species Homo antecessor, found in level TD6 of the site of Gran Dolina (Sierra de Atapuerca, Burgos, Spain). These new fossils consist of an almost complete left talus (ATD6-95) and the proximal three-quarters of a right fourth metatarsal (ATD6-124). The talus ATD6-95 is tentatively assigned to Hominin 10 of the TD6 sample, an adult male specimen with which the second metatarsal ATD6-70+107 (already published) is also tentatively associated. Analysis of these fossils and other postcranial remains has made possible to estimate a stature similar to those of the specimens from the Middle Pleistocene site of Sima de los Huesos (Sierra de Atapuerca, Burgos, Spain). The morphology of the TD6 metatarsals does not differ significantly from that of modern humans, Neanderthals and the specimens from Sima de los Huesos. Talus ATD6-95, however, differs from the rest of the comparative samples in being long and high, having a long and wide trochlea, and displaying a proportionally short neck.  相似文献   

6.
The caves at Klasies River contain abundant archaeological evidence relating to human evolution in the late Pleistocene of southern Africa. Along with Middle Stone Age artifacts, animal bones, and other food waste, there are hominin cranial fragments, mandibles with teeth, and a few postcranial remains. Three foot bones can now be added to this inventory. An adult first metatarsal is similar in size and discrete anatomical features to those from Holocene burials in the Cape Province. A complete and well-preserved second metatarsal is especially long and heavy at midshaft in comparison to all Holocene and more recent South African homologues. A large fifth metatarsal is highly distinctive in its morphology. In overall size, these pedal elements resemble specimens from late Pleistocene sites in western Asia, but there are some differences in proportions. The fossils support earlier suggestions concerning a relatively high level of sexual dimorphism in the African Middle Stone Age population. Squatting facets on the two lateral metatarsals appear to indicate a high frequency of kneeling among members of this group. The new postcranial material also underlines the fact that the morphology of particular skeletal elements of some of the 100,000-year-old Klasies River individuals falls outside the range of modern variation.  相似文献   

7.
Humans and chimpanzees share some 99% of DNA and amino acid identity, yet they exhibit important biomedical, morphological, and cognitive differences, difficult to accommodate within the remaining 1% of sequence diversity. Other types of genetic variation must be responsible for the taxonomic differences. Here we trace the evolution of AluYb8 repeats from a single origin at the roots of higher primates to a large increase in their number in humans. We identify nine AluYb8 DNA repeats in the chimpanzee genome compared to over 2200 repeats in the human, which represents a 250-fold increase in the rate of change in the human lineage and far outweighs the 99% sequence similarity between the two species. It is estimated that the average age of the human Yb8Alus is about 3.3 million years (My); almost 10% of them are identical in sequence, and hence are of recent origin. Genomic variations of this magnitude, distinguishing humans from great apes have not been realized. This explosive Alu expansion must have had a profound effect on the organization of our genome and the architecture of our chromosomes, inferentially altering profiles of gene expression and chromosome choreography in cell division. Additionally, we conclude that this major evolutionary process of Alu proliferation is driven by internal forces, written in the chemistry of DNA, rather than by external selection.  相似文献   

8.
This study proposes a new way to use metatarsals to identify locomotor behavior of fossil hominins. Metatarsal head articular dimensions and diaphyseal strength in a sample of chimpanzees, gorillas, orangutans, and humans (n = 76) are used to explore the relationships of these parameters with different locomotor modes. Results show that ratios between metatarsal head articular proportions and diaphyseal strength of the hallucal and fifth metatarsal discriminate among extant great apes and humans based on their different locomotor modes. In particular, the hallucal and fifth metatarsal characteristics of humans are functionally related to the different ranges of motion and load patterns during stance phase in the forefoot of humans in bipedal locomotion. This method may be applicable to isolated fossil hominin metatarsals to provide new information relevant to debates regarding the evolution of human bipedal locomotion. The second to fourth metatarsals are not useful in distinguishing among hominoids. Further studies should concentrate on measuring other important qualitative and quantitative differences in the shape of the metatarsal head of hominoids that are not reflected in simple geometric reconstructions of the articulation, and gathering more forefoot kinematic data on great apes to better understand differences in range of motion and loading patterns of the metatarsals. Am J Phys Anthropol 143:198–207, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Taphonomic analysis of the Olduvai Hominid (OH) 8 left foot from FLK NN Level 3 and the OH 35 left leg from FLK Level 22 (Zinjanthropus level) in Middle Bed I, Olduvai Gorge, indicates that both were fed upon by crocodiles. Both bear extensive tooth marking, including bisected tooth marks diagnostic of crocodylian feeding. The location of the bisected tooth marks on the distal tibia and the talus indicates disarticulation of the foot by crocodiles. The broken proximal ends of the tibia and fibula are more typical of feeding by a leopard-like carnivore, as is damage to the OH 7 mandible and parietals that are associated with and may derive from the same individual as OH 8. Previous work showing a close articulation of the foot and the leg has been used to suggest that the two specimens belong to the same individual despite deriving from sites separated by 200 m and slightly different stratigraphic levels according to previous work. The location and agent of tooth marking and the nature of gross damage do not refute this hypothesis, but the punctures on the talus and distal tibia differ in size and sharpness. Recent work shows that the stratigraphic discrepancy between OH 8 and OH 35 is greater than previously thought, refuting the single-individual hypothesis. Although seemingly unlikely, this denotes that two hominids represented by rarely found leg and foot elements both lost their left foot to crocodiles at nearby sites within a 6,000 year interval. We cannot determine if the hominids were preyed upon by crocodiles or mammalian carnivores. However, the carnivore damage to them and associated faunal remains suggests that high predation risk constrained hominid activities involving discard of the stone artifacts found at these sites. This finding is inconsistent with the interpretation of the sites as home bases or living floors.  相似文献   

10.
Juan Chen  Nian-He Xia 《Flora》2011,206(5):458-467
In order to find new non-molecular evidence to support the phylogenetic and taxonomic position, pollen grains of 20 populations of 16 species of Chinese Curcuma L. and Boesenbergia Kuntz (Zingiberaceae) were investigated under SEM and TEM. The pollen grains are spherical and ovoid, nonaperturate. The pollen wall is composed of a very thin exine and a thick intine. The exine is psilate or echinate. The intine consists of two layers, i.e., a thick, channeled layer (exintine) and an inner homogenous layer (endintine). The results reveal morphological congruence between the pollen grains of species of Curcuma, which according to DNA sequence data appears to be a polyphyletic genus. However the uniform pollen morphology in Curcuma provides no evidence to divide this genus into separate taxonomic entities. Our results on pollen morphology also do not provide any additional evidence to either unite or segregate Boesenbergia albomaculata and Curcumorpha longiflora in the same genus and demonstrate that more taxonomic data on the genus Boesenbergia and its relatives are needed before a final decision can be made.  相似文献   

11.
A variety of lines of evidence support the idea that neutral evolutionary processes (genetic drift, mutation) have been important in generating cranial differences between Neandertals and modern humans. But how do Neandertals and modern humans compare with other species? And how do these comparisons illuminate the evolutionary processes underlying cranial diversification? To address these questions, we used 27 standard cranial measurements collected on 2524 recent modern humans, 20 Neandertals and 237 common chimpanzees to estimate split times between Neandertals and modern humans, and between Pan troglodytes verus and two other subspecies of common chimpanzee. Consistent with a neutral divergence, the Neandertal versus modern human split-time estimates based on cranial measurements are similar to those based on DNA sequences. By contrast, the common chimpanzee cranial estimates are much lower than DNA-sequence estimates. Apparently, cranial evolution has been unconstrained in Neandertals and modern humans compared with common chimpanzees. Based on these and additional analyses, it appears that cranial differentiation in common chimpanzees has been restricted by stabilizing natural selection. Alternatively, this restriction could be due to genetic and/or developmental constraints on the amount of within-group variance (relative to effective population size) available for genetic drift to act on.  相似文献   

12.
Canine tooth size reduction and the associated reduction in canine dimorphism is a basal hominin character that also provides important evidence for models of behavioral evolution. Two specimens of Australopithecus anamensis (KNM-KP 29287 and KNM-KP 29283) that do not preserve the canine crown, but do preserve the root or alveolus, appear to suggest that canine size variation and canine dimorphism in this species may have been greater than in other hominins. We evaluate canine root and crown dimensions in a series of extant hominoids, and estimate canine crown height in Australopithecus afarensis and A. anamensis. Our results demonstrate that it is possible to generate estimates of canine crown height from basal canine crown and root dimensions with a moderate degree of accuracy. Estimates of maxillary canine crown size for A. anamensis are slightly larger than those of A. afarensis, and are approximately the same size as canines of modern female chimpanzees. Estimated mandibular canine crown height is very similar in the two species. Variation within the A. anamensis sample of estimated canine crown heights is similar to that of modern humans, suggesting a low degree of sexual dimorphism. Inclusion of estimates for KNM-KP 29287 and KNM-KP 29283 does not substantially increase either the estimate of overall canine size or variation for A. anamensis.  相似文献   

13.
StW 114/115, from Sterkfontein, South Africa, is the earliest complete hominin fifth metatarsal. Comparisons of StW 114/115 to modern humans, extant apes, and partial hominin metatarsals AL 333‐13, AL 333‐78, SKX 33380, OH 8, and KNM‐ER 803f reveal a similar morphology in all six fossils consistent with habitual bipedality. Although StW 114/115 possesses some primitive characters, the proximal articular morphology and internal torsion of the head are very human‐like, suggesting a stable lateral column and the likely presence of lateral longitudinal and transverse tarsal arches. We conclude that, at least in the lateral component of the foot of the StW 114/115 individual, the biomechanical pattern is very similar to that of modern humans. This, however, may not have been the case in the medial column of the foot, as a mosaic pattern of hominin foot evolution and function has been suggested. The results of this study may support the hypothesis of an increased calcaneo‐cuboid stability having been an early evolutionary event in the history of terrestrial bipedalism. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites.  相似文献   

15.
Wild great apes are widely infected with a number of malaria parasites (Plasmodium spp.). Yet, nothing is known about the biology of these infections in the wild. Using faecal samples collected from wild chimpanzees, we investigated the effect of age on Plasmodium spp. detection rates. The data show a strong association between age and malaria parasite positivity, with significantly lower detection rates in adults. This suggests that, as in humans, individuals reaching adulthood have mounted an effective protective immunity against malaria parasites.  相似文献   

16.
In 2004, a new hominin species, Homo floresiensis, was described from Late Pleistocene cave deposits at Liang Bua, Flores. H. floresiensis was remarkable for its small body-size, endocranial volume in the chimpanzee range, limb proportions and skeletal robusticity similar to Pliocene Australopithecus, and a skeletal morphology with a distinctive combination of symplesiomorphic, derived, and unique traits. Critics of H. floresiensis as a novel species have argued that the Pleistocene skeletons from Liang Bua either fall within the range of living Australomelanesians, exhibit the attributes of growth disorders found in modern humans, or a combination of both. Here we describe the morphology of the LB1, LB2, and LB6 mandibles and mandibular teeth from Liang Bua. Morphological and metrical comparisons of the mandibles demonstrate that they share a distinctive suite of traits that place them outside both the H. sapiens and H. erectus ranges of variation. While having the derived molar size of later Homo, the symphyseal, corpus, ramus, and premolar morphologies share similarities with both Australopithecus and early Homo. When the mandibles are considered with the existing evidence for cranial and postcranial anatomy, limb proportions, and the functional anatomy of the wrist and shoulder, they are in many respects closer to African early Homo or Australopithecus than to later Homo. Taken together, this evidence suggests that the ancestors of H. floresiensis left Africa before the evolution of H. erectus, as defined by the Dmanisi and East African evidence.  相似文献   

17.
Sex differences other than the simple dimorphism in size were documented for the metapodials of two primate species. Lengths of metacarpals and metatarsals were obtained from the skeletons of 64 gorillas and 42 chimpanzees. Length ratios were constructed for all possible pairings of the five bones in each individual hand and foot. For both species, several of these length ratios exhibited substantial differences between the sexes. Body size was not the basis for these sex differences; when specimens of similar size were compared, the sex differences remained. In humans, length ratios for the fingers and toes also have previously been demonstrated to exhibit sex differences, and the length ratio for the index and ring fingers (the 2D:4D ratio) has been shown to correlate with various medical conditions. Various facts suggest that length ratios in human digits are associated with androgen exposure, probably during prenatal development. For gorillas, the metacarpal length ratio showing the largest sex difference was 4Mc:5Mc in both hands, and the metatarsal length ratio showing the largest sex difference was 1Mt:2Mt in the left foot. Sex differences in length ratios also existed for chimpanzees, but they were generally smaller than for gorillas. Apparently, both gorillas and chimpanzees are affected by developmental mechanisms, possibly androgenic mechanisms, similar to those in humans. Analyses of previous measurements [Susman, R.L., 1979 Comparative and functional morphology of hominoid fingers. Am. J. Phys. Anthropol. 50, 215-236] revealed that all components of the rays are not affected equally by whatever mechanisms are responsible for the sex differences in length ratios.  相似文献   

18.
M R Simon 《Acta anatomica》1978,102(2):176-183
The Hueter-Volkmann law of epiphyseal pressures describes an inverse relationship between static compressive forces parallel to the axis of epiphyseal growth and the rate of growth of that cartilage. Studies of histological sections of the epiphyseal plate of the fourth metatarsals of (a) control, (b) bipedal and (c) bipedal rats with amputation of the fifth metatarsal show that dynamic compressive forces can stimulate epiphyseal cartilage growth. Within certain parameters, both the relief and increase of dynamic compression accelerate epiphyseal growth. It is the amount and kind of loading that are important factors to accelerate epiphyseal growth.  相似文献   

19.
Cheiridia are valuable indicators of positional behavior, as they directly contact the substrate, but systematic comparison of the structural properties of both metacarpals and metatarsals has never been carried out. Differences in locomotor behavior among the great apes (knuckle-walking vs. quadrumanous climbing) can produce biomechanical differences that may be elucidated by the parallel study of cross-sectional characteristics of metacarpals and metatarsals. The aim of this work is to study the cross-sectional geometric properties of these bones and their correlation with locomotor behavior in large-bodied hominoids. The comparisons between bending moments of metacarpals and metatarsals of the same ray furnished interesting results. Metacarpals III and especially IV of the knuckle-walking African apes were relatively stronger than those of humans and orangutans, and metatarsal V of humans was relatively stronger than those of the great apes. Interestingly, the relative robusticity of the metacarpal IV of the quadrumanous orangutan was between that of the African apes and that of humans. The main conclusions of the study are: 1) cross-sectional dimensions of metacarpals and metatarsals are influenced by locomotor modes in great apes and humans; 2) interlimb comparisons of cross-sectional properties of metacarpals and metatarsals are good indicators of locomotor modes in great apes and humans; and 3) the results of this study are in accord with those of previous analyses of plantar pressure and morphofunctional traits of the same bones, and with behavioral studies. These results provide a data base from which it will be possible to compare the morphology of the fossils in order to gain insight into the locomotor repertoires of extinct taxa.  相似文献   

20.
Taxonomic characterization was performed on the putative N2-fixing microbiota associated with the coral species Mussismilia hispida, and with its sympatric species Palythoa caribaeorum, P. variabilis, and Zoanthus solanderi, off the coast of São Sebastião (São Paulo State, Brazil). The 95 isolates belonged to the Gammaproteobacteria according to the 16S rDNA gene sequences. In order to identify the isolates unambiguously, pyrH gene sequencing was carried out. The majority of the isolates (n=76) fell within the Vibrio core group, with the highest gene sequence similarity being towards Vibrio harveyi and Vibrio alginolyticus. Nineteen representative isolates belonging to V. harveyi (n=7), V. alginolyticus (n=8), V. campbellii (n=3), and V. parahaemolyticus (n=1) were capable of growing six successive times in nitrogen-free medium and some of them showed strong nitrogenase activity by means of the acetylene reduction assay (ARA). It was concluded that nitrogen fixation is a common phenotypic trait among Vibrio species of the core group. The fact that different Vibrio species can fix N2 might explain why they are so abundant in the mucus of different coral species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号