首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accelerated post-irradiation recovery of hematopoietic marrow has been reported following treatment with lithium (Li) or vincristine (VcR). Because these two agents appear to exert their effects on different, albeit overlapping, hematopoietic populations, it was felt that combining them might lead to a wider spectrum of enhanced post-irradiation marrow regeneration. Results demonstrated that an accelerated recovery, which appeared to be additive in nature, was observed in the marrow following combined VcR-Li/4.5 Gy total-body irradiation. The combined schedule significantly enhanced post-irradiation recovery of white blood cells, 12-day spleen colony-forming units, erythroid burst-forming units, and fibroblastic colony-forming units over radiation alone; and recovery of marrow cellularity, multipotential colony-forming units (CFU-gemm) and granulocytic/monocytic colony-forming units (CFU-gm) over both radiation alone and either drug given singly with the 4.5 Gy. In addition, while data on the ability of regenerating stroma to support CFU-gm and CFU-gemm did not suggest that VcR was acting to enhance post-irradiation marrow recovery by increasing stromal production of hematopoietic growth factors, Li did appear to increase production of one or more of these factors, and this may be part of its mechanism of action.  相似文献   

2.
Medications that can mitigate against radiation injury are limited. In this study, we investigated the ability of recombinant human growth hormone (rhGH) to mitigate against radiation injury in mice and nonhuman primates. BALB/c mice were irradiated with 7.5 Gy and treated post-irradiation with rhGH intravenously at a once daily dose of 20 µg/dose for 35 days. rhGH protected 17 out of 28 mice (60.7%) from lethal irradiation while only 3 out of 28 mice (10.7%) survived in the saline control group. A shorter course of 5 days of rhGH post-irradiation produced similar results. Compared with the saline control group, treatment with rhGH on irradiated BALB/c mice significantly accelerated overall hematopoietic recovery. Specifically, the recovery of total white cells, CD4 and CD8 T cell subsets, B cells, NK cells and especially platelets post radiation exposure were significantly accelerated in the rhGH-treated mice. Moreover, treatment with rhGH increased the frequency of hematopoietic stem/progenitor cells as measured by flow cytometry and colony forming unit assays in bone marrow harvested at day 14 after irradiation, suggesting the effects of rhGH are at the hematopoietic stem/progenitor level. rhGH mediated the hematopoietic effects primarily through their niches. Similar data with rhGH were also observed following 2 Gy sublethal irradiation of nonhuman primates. Our data demonstrate that rhGH promotes hematopoietic engraftment and immune recovery post the exposure of ionizing radiation and mitigates against the mortality from lethal irradiation even when administered after exposure.  相似文献   

3.
The effects of liposomal muramyl tripeptide phosphatidylethanolamine (MTP-PE/MLV, radioprotective immunomodulator; 10 mg/kg) and indomethacin (INDO, inhibitor of prostaglandin production; 2 mg/kg) on post-irradiation recovery of hematopoietic functions in mice were investigated. Two agents with distinct radioprotective mechanisms were administered alone or in combination 24 h and 3 h before exposure to 7 Gy (60)Co radiation. In the post-irradiation period (3-14 days) combined pre-treatment of mice accelerated recovery of bone marrow cellularity, weight of spleen and myelopoietic and erythropoietic activity in both hematopoietic organs, compared to treatment with MTP-PE/MLV or indomethacin alone. In the peripheral blood, improved radioprotective effects of combined drug administration were found in the recovery of reticulocytes and platelet count. No further significant differences in the recovery of leukocyte count were observed in the examined groups until post-irradiation day 14. Within the first 3-6 post-irradiation days, the bone marrow and peripheral blood smears of mice pre-treated with indomethacin alone or its combination with MTP-PE/MLV more frequently featured blast cells and large cells with abundant cytoplasm which could be considered the hematopoietic stem cells.  相似文献   

4.
L-arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation ((137)Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with L-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of L-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). L-arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production.  相似文献   

5.
Bacterial lipoproteins (BLP) induce innate immune responses in mammals by activating heterodimeric receptor complexes containing Toll-like receptor 2 (TLR2). TLR2 signaling results in nuclear factor-kappaB (NF-κB)-dependent upregulation of anti-apoptotic factors, anti-oxidants and cytokines, all of which have been implicated in radiation protection. Here we demonstrate that synthetic lipopeptides (sLP) that mimic the structure of naturally occurring mycoplasmal BLP significantly increase mouse survival following lethal total body irradiation (TBI) when administered between 48 hours before and 24 hours after irradiation. The TBI dose ranges against which sLP are effective indicate that sLP primarily impact the hematopoietic (HP) component of acute radiation syndrome. Indeed, sLP treatment accelerated recovery of bone marrow (BM) and spleen cellularity and ameliorated thrombocytopenia of irradiated mice. sLP did not improve survival of irradiated TLR2-knockout mice, confirming that sLP-mediated radioprotection requires TLR2. However, sLP was radioprotective in chimeric mice containing TLR2-null BM on a wild type background, indicating that radioprotection of the HP system by sLP is, at least in part, indirect and initiated in non-BM cells. sLP injection resulted in strong transient induction of multiple cytokines with known roles in hematopoiesis, including granulocyte colony-stimulating factor (G-CSF), keratinocyte chemoattractant (KC) and interleukin-6 (IL-6). sLP-induced cytokines, particularly G-CSF, are likely mediators of the radioprotective/mitigative activity of sLP. This study illustrates the strong potential of LP-based TLR2 agonists for anti-radiation prophylaxis and therapy in defense and medical scenarios.  相似文献   

6.
Two distinct microenvironmental niches that regulate hematopoietic stem/progenitor cell physiology in the adult bone marrow have been proposed; the endosteal and the vascular niche. While extensive studies have been performed relating to molecular interactions in the endosteal niche, the mechanisms that regulate hematopoietic stem/progenitor cell interaction with bone marrow endothelial cells are less well defined. Here we demonstrate that endothelial cells derived from the bone marrow supported hematopoietic stem/progenitor cells to a higher degree than other endothelial or stromal cell populations. This support was dependant upon placental growth factor expression, as genetic knockdown of mRNA levels reduced the ability of endothelial cells to support hematopoietic stem/progenitor cells in vitro. Furthermore, using an in vivo model of recovery from radiation induced myelosuppression, we demonstrate that bone marrow endothelial cells were able to augment the recovery of the hematopoietic stem/progenitor cells. However, this effect was diminished when the same cells with reduced placental growth factor expression were administered, possibly owing to a reduced homing of the cells to the bone marrow vasculature. Our data suggest that placental growth factor elaborated from bone marrow endothelial cells mediates the regulatory effects of the vascular niche on hematopoietic stem/progenitor cell physiology.  相似文献   

7.
Dietary antioxidants have radioprotective effects after ionizing radiation exposure that limit hematopoietic cell depletion. We sought to determine the mechanism of proton-induced hematopoietic cell death in animals receiving a moderate dose of whole-body proton radiation. In addition, animals were maintained on diets supplemented with or without dietary antioxidants. In the presence of the dietary antioxidants, total bone marrow mRNA and protein expression of apoptosis-related genes were decreased compared to the expression profiles in the irradiated mice not receiving the antioxidant formulation. These data confirm high-energy proton-induced gene expression of classical apoptosis markers including BAX, caspase-3 and PARP-1. Antioxidant supplementation resulted in decreased expression of these genes in addition to increased protein expression of the anti-apoptosis markers Bcl2 and Bcl-xL. In conclusion, oral supplementation with antioxidants appears to be an effective approach for radioprotection against hematopoietic cell death.  相似文献   

8.
We recently reported that indomethacin, an inhibitor of prostaglandin (PG) synthesis, increased the radioresponse of PG-producing murine tumors, but it protected the hematopoietic system from radiation damage [Furuta et al., Cancer Res. 48, 3008-3013 (1988)]. Here we have investigated possible mechanisms responsible for the radioprotective effect of indomethacin. In the exogenous spleen colony assay, bone marrow cells from indomethacin-treated mice showed a similar radioresponse to those from mice not treated with indomethacin, thus excluding true radioprotection as a mechanism. Also, neither the total number of bone marrow cells nor the number of stem cells in bone marrow were affected by the treatment with indomethacin. However, indomethacin induced significant splenomegaly, which was associated with an increased number of both nucleated cells and hematopoietic stem cells in the spleen. The latter was determined by the exogenous spleen colony assay. Thus indomethacin protected hematopoietic tissue indirectly through stimulation of hematopoietic cells in the spleen. When indomethacin was combined with WR-2721, which is a true radioprotector, we obtained a greater radioprotective effect than with either used alone according to the endogenous spleen colony assay.  相似文献   

9.
Nicaraven, a hydroxyl radical-specific scavenger has been demonstrated to attenuate radiation injury in hematopoietic stem cells with 5 Gy γ-ray exposures. We explored the effect and related mechanisms of nicaraven for protecting radiation injury induced by sequential exposures to a relatively lower dose γ-ray. C57BL/6 mice were given nicaraven or placebo within 30 min before exposure to 50 mGy γ-ray daily for 30 days in sequences (cumulative dose of 1.5 Gy). Mice were victimized 24 h after the last radiation exposure, and the number, function and oxidative stress of hematopoietic stem cells were quantitatively estimated. We also compared the gene expression in these purified stem cells from mice received nicaraven and placebo treatment. Nicaraven increased the number of c-kit+ stem/progenitor cells in bone marrow and peripheral blood, with a recovery rate around 60–90% of age-matched non-irradiated healthy mice. The potency of colony forming from hematopoietic stem/progenitor cells as indicator of function was completely protected with nicaraven treatment. Furthermore, nicaraven treatment changed the expression of many genes associated to DNA repair, inflammatory response, and immunomodulation in c-kit+ stem/progenitor cells. Nicaraven effectively protected against damages of hematopoietic stem/progenitor cells induced by sequential exposures to a relatively low dose radiation, via complex mechanisms.  相似文献   

10.
Vasin  M. V.  Ushakov  I. B.  Kovtun  V. Yu.  Komarova  S. N.  Semenova  L. A.  Koroleva  L. V.  Galkin  A. A.  Afanas’ev  R. V. 《Biophysics》2011,56(5):917-920
Hybrid F1 mice (CBA × C57Bl/6) were subjected to irradiation at a nonlethal dose of 6.7 Gy that brought on acute radiation sickness. In the experiments performed, we observed the beneficial effect of combined application of quercetin injected 30–60 min prior to irradiation with γ rays and the emergent radioprotector indralin injected after irradiation on development of postradiation repair in hematopoietic tissue. This effect was expressed as accelerated formation of endogenous spleen colonies and recovery of spleen weight and attenuation of leucopenia 12 and 16 days after acute irradiation. Treatment with only quercetin was not radioprotective.  相似文献   

11.
The Bowman-Birk proteinase inhibitor (BBI) has previously been described as a radioprotective agent against ionising radiation. It was demonstrated that BBI is able to significantly increase the clonogenic cell survival of normal fibroblasts when applied before exposure to ultraviolet B (UVB) radiation. In transformed TP53-mutated cell lines, however, the BBI-mediated radioprotection was absent. At the molecular level, the radioprotective effect of BBI can be correlated with BBI-mediated stabilisation of TP53 protein prior to irradiation. Following UVB irradiation, the BBI-treated cells present an accelerated removal of cyclobutane pyrimidine dimers. Thus, the cell and molecular biological data presented suggest that BBI is able to protect cells with functional TP53 from UVB-induced DNA damage. This protective effect is most likely achieved via the activation of the TP53 signalling cascade resulting in the activation of nucleotide excision repair. Received: 7 August 2000 / Accepted: 11 January 2001  相似文献   

12.
Tissue damage induced by ionizing radiation in the hematopoietic and gastrointestinal systems is the major cause of lethality in radiological emergency scenarios and underlies some deleterious side effects in patients undergoing radiation therapy. The identification of target-specific interventions that confer radiomitigating activity is an unmet challenge. Here we identify the thrombomodulin (Thbd)-activated protein C (aPC) pathway as a new mechanism for the mitigation of total body irradiation (TBI)-induced mortality. Although the effects of the endogenous Thbd-aPC pathway were largely confined to the local microenvironment of Thbd-expressing cells, systemic administration of soluble Thbd or aPC could reproduce and augment the radioprotective effect of the endogenous Thbd-aPC pathway. Therapeutic administration of recombinant, soluble Thbd or aPC to lethally irradiated wild-type mice resulted in an accelerated recovery of hematopoietic progenitor activity in bone marrow and a mitigation of lethal TBI. Starting infusion of aPC as late as 24 h after exposure to radiation was sufficient to mitigate radiation-induced mortality in these mice. These findings suggest that pharmacologic augmentation of the activity of the Thbd-aPC pathway by recombinant Thbd or aPC might offer a rational approach to the mitigation of tissue injury and lethality caused by ionizing radiation.  相似文献   

13.
Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before 60Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following 60Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors.  相似文献   

14.
AimsThe potential of human mesenchymal stem cell-like stroma prepared from placental/umbilical cord blood for hematopoietic regeneration by X-irradiated hematopoietic stem cells is herein assessed.Main methodsPlacental/umbilical cord blood-derived mesenchymal stem cell-like stromal cells were applied to a regenerative ex vivo expansion of X-irradiated human CD34+ cells in a serum-free liquid culture supplemented with a combination of interleukine-3 plus stem cell factor plus thrombopoietin.Key findingsThe total number of cells and of lineage-committed myeloid hematopoietic progenitor cells generated in the co-culture of both non-irradiated and X-irradiated cells with stromal cells was significantly higher than those in the stroma-free culture. In addition, the number of CD34+ cells and CD34+/CD38? cells, immature hematopoietic stem/progenitor cells also increased more than the stroma-free culture. The stromal cells produced various types of cytokines, although there was little difference between the co-cultures of non-irradiated and X-irradiated cells with stromal cells. Furthermore, when X-irradiated cells came in contact with stromal cells for 16 h before cytokine stimulation, a similar degree of hematopoiesis was observed, thus suggesting the critical role of cell-to-cell interaction.SignificanceThe present results showed the potential efficacy of human mesenchymal stem cell-like stroma for hematopoietic regeneration from irradiated hematopoietic stem/progenitor cells.  相似文献   

15.
Studies are reported of the enhancement of stem cell recovery following whole body irradiation as a result of prior administration of cyclophosphamide. It is shown that the much larger enhancement of regeneration observed for the hosts own surviving stem cells, compared to the regeneration of injected bone marrow stem cells, is due to the different numbers of stem cells initiating the regeneration in conjunction with the time course of stem cell regeneration. The results show that the environmental changes produced by cyclophosphmide greatly enhance haemopoietic recovery even though at the dose used this agent is relatively toxic to stem cells. Furthermore it has been shown that the level of stem cell regeneration is nearly independent of the gamma-ray dose in the range 3-8 gray (300-800 rad). If human bone marrow should respond similarly it follows that regeneration produced by cytotoxic drugs administered prior to radiation embodies a considerable safety factor as far as recovery of the haemopoietic system is concerned.  相似文献   

16.
Hematopoietic stem cells transplantation (HSCT) causes endothelial cell damage, disrupting hematopoietic microenviroment and leading to various complications. We hypothesized that infusion of endothelial progenitor cells (EPCs) may improve endothelium repair, facilitate hematopoietic reconstitution, and alleviate complications associated with HSCT. C57Bl6, and BALB/c mice received total body irradiation followed by infusion of C57Bl6-derived bone marrow (BM) cells, with or without concomitant infusion of C57Bl6-derived EPCs. The time course of hematopoietic and immune reconstitution and the severity of the graft-versus-host disease (GVHD) were monitored. Further, to confirm that EPCs promote endothelial cell recovery, HSCT mice were treated with anti-VE-cadherin antibody targeting the endothelium. The EPCs-treated mice exhibited accelerated recovery of BM vasculature, cellularity, hematopoietic stem and progenitor cell recovery, improved counts of lymphocyte subsets in peripheral blood, and facilitated spleen structure reconstruction. EPCs infusion also ameliorated the GVHD in the C57Bl6????BALB/c allo-HSCT model. Systemic administration of anti-VE-cadherin antibody significantly delayed hematological and immune reconstitution in the EPCs-infused mice. In conclusion, our data demonstrate that infusion of EPCs augments the hematopoietic and immune reconstitution, and alleviates the GVHD. These findings further highlight the relationship between the microvascular recovery, hematopoietic and immune reconstitution, and the GVHD.  相似文献   

17.
Hypersensitivity to chemo- and radiotherapy employed during cancer treatment complicates patient management. Identifying mutations in genes that compromise tissue recovery would rationalize treatment and may spare hypersensitive patients undue tissue damage. Genes that govern stem cell homeostasis, survival, and progenitor cell maintenance are of particular interest in this regard. We used wild-type and c-myb knock-out mice as model systems to explore stem and progenitor cell numbers and sensitivity to cytotoxic damage in two radiosensitive tissue compartments, the bone marrow and colon. Because c-myb null mice are not viable, we used c-myb heterozygous mice to test for defects in stem-progenitor cell pool recovery following gamma-radiation and 5-fluorouracil treatment, showing that c-myb(+/-) mice are hypersensitive to both agents. While apoptosis is comparable in mutant and wild-type mice following radiation exposure, the crypt beds of c-myb(+/-) mice are markedly depleted of proliferating cells. Extrapolating from these data, we speculate that acute responses to cytotoxic damage in some patients may also be attributed to compromised c-myb function.  相似文献   

18.
Studies are reported of the enhancement of stem cell recovery following whole body irradiation as a result of prior administration of cyclophosphamide. It is shown that the much larger enhancement of regeneration observed for the hosts own surviving stem cells, compared to the regeneration of injected bone marrow stem cells, is due to the different numbers of stem cells initiating the regeneration in conjunction with the time course of stem cell regeneration. The results show that the environmental changes produced by cyclophosphamide greatly enhance haemopoietic recovery even though at the dose used this agent is relatively toxic to stem cells. Furthermore it has been shown that the level of stem cell regeneration is nearly independent of the γ-ray dose in the range 3–8 gray (300–800 rad). If human bone marrow should respond similarly it follows that regeneration produced by cytotoxic drugs administered prior to radiation embodies a considerable safety factor as far as recovery of the haemopoietic system is concerned.  相似文献   

19.
As the potential risk of radiation exposure is increasing, radioprotectors studies are gaining importance. In this study, novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opening derivatives were synthesized, and their radioprotective effects were evaluated. Among these, compound 10a displayed the highest radioprotective activity in IEC-6 and HFL-1 cells. Its oral administration increased the survival rates of irradiated mice and alleviated total body irradiation (TBI)-induced hematopoietic damage by mitigating myelosuppression and improving hematopoietic stem/progenitor cell frequencies. Furthermore, 10a treatment prevented abdominal irradiation (ABI)-induced structural damage to the small intestine. Experiment results demonstrated that 10a increased the number of Lgr5+ intestinal stem cells, lysozyme+ Paneth cells and Ki67+ transient amplifying cells, and reduced apoptosis of the intestinal epithelium cells in irradiated mice. Moreover, in vitro and in vivo studies demonstrated that the radioprotective activity of 10a is associated to the reduction of oxidative stress and the inhibition of DNA damage. Furthermore, compound 10a downregulated the expressions of p53, Bax, caspase-9 and caspase-3, and upregulated the expression of Bcl-2, suggesting that it could prevent irradiation-induced intestinal damage through the p53-dependent apoptotic pathway. Collectively, these findings demonstrate that 10a is beneficial for the prevention of radiation damage and has the potential to be a radioprotector.  相似文献   

20.
Thiol compounds have long been known to protect living cells against the harmful effects of ionizing radiation. Maetallothionein is a naturally occurring low molecular weight polypeptide rich in cysteine residues and may be useful in protection against low-level radiation effects.

Radiation damage to DNA and its nucleotide components and the radioprotective effect of metallothionein have been studied in model chemical systems and compared to its effect on cells. Metallothionein acts both as a free radical scavenger and a reductant, and its radioprotective effectiveness has been studied as a function of dose, drug concentration, and in the presence and absence of oxygen. It is more effective in protecting against sugar-phosphate damage under hypoxic conditions. The chemical modification is greater than that of cell killing as measured by the loss of colony-forming ability. Dose reduction factors greater than two are observed for DNA radioprotection, but the values in cells are much lower. These findings will be discussed in terms of the molecular mechanisms and their implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号