首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dextran fractions from NRRL strains Leuconostoc mesenteroides B-742, B-1299, B-1355, and Streptobacterium dextranicum B-1254 were examined by 13C-n.m.r. spectroscopy at 34 and 90°, and by methylation structural analysis. The native, structurally homogeneous dextran from L. mesenteroides NRRL B-1402 was also examined. The data allow correlations to be made between the structure and physical properties of the S (soluble) and L (less-soluble) fraction pairs of dextrans B-742, B-1254, B-1299, and B-1355. For the dextrans under consideration here, increasing solubility of the dextran (both in water and in aqueous ethanol) was found to correlate with decreasing percentages of α-d-(1→6)-linked d-glucopyranosyl residues. Both the diagnostic nature of the 70–75-p.p.m. spectral region with regard to type of dextran branching, and the increase in resolution of the polysaccharide spectra at higher temperatures, have been further confirmed.  相似文献   

2.
Dextran fractions from NRRL strain Streptococcus sp. B-1526 and the native, structurally homogeneous dextrans from Acetobacter capsulatum B-1225, Leuconostoc mesenteroides B-1307, and L. dextranicum B-1420 were examined by 13C-n.m.r. spectroscopy at 90°. Dextran B-1526 fraction I and dextran B-1420 were also examined by g.l.c:-m.s., methylation-structural analysis. All of these dextrans and dextran fractions branch, either primarily or exclusively, through α-d-(1→4)-glucopyranosyl linkages; however, their degrees of branching differ. Several 13C-n.m.r. resonances that are diagnostic for 4,6-di-O-substituted α-d-glucopyranosyl residues have been identified. Comparison was made with dextrans from L. mesenteroides B-742 fraction L and Streptobacterium dextranicum B-1254 fraction S[L], for which previously published, methylation-structural analyses had established the presence of 4,6-di-O-substituted α-d-glucopyranosyl residues at the branch points. These fermentation culture, and in a sedimented gum-phase (fraction I). The product from the soluble phase is designated here as fraction S in order to simplify the terminology. Originally7, this product was not designated a fraction, because it was, by definition8, the main dextran product. The same distinction also applies to the pairs of products from strains B-1380, B-1420, and b-1394 (see ref. 7). The attempts thus made to establish the significance of the phase separation were indeterminant.Methods.— Methods previously described were used for the mythylation9 of the dextrans and for structural analysis6.38 by combined g.l.c-electron-impact mass spectrometry of the aldononitriles. For each permethylation, three successive Hakomori39 methylations were employed on an initial, 40-mg sample, with ~80% (final weight) recovery of each permethylated dextran. Successive formolysis and acetic acid hydrolysis were employed, and, after each step, the resulting solutions were clear, colorless, and free from suspended material. All mass spectra were recorded with a Hewlett-Packard 5980A GC/MS integrated g.l.c.-m.s.-computer system. The g.l.c. peak-integrals reported in Table II were obtained with a Barber-Coleman Series 5000 g.l.c. instrument equipped with hydrogen-flame detectors. On-column injection with glass columns (2mmi.d. x 1.23m) was employed for all chromatograhy.The 13C-n.m.r. conditions and the methods for the preparation of dextran samples have been described4. In general, a Varian XL-100-15 spectrometer equipped with a Nicolet TT-100 system was employed in the Fourier-transform mode. The dextran samples, ~0.3g/4 mL of deuterium oxide, were maintained at 90°. Chemical shifts are expressed in p.p.m. relative to external tetramethylsilane, but were actually calculated by reference to the solvent lock-signal. The convolution-difference resolution-enhancement (c.d.r.e.) technique has been described40.  相似文献   

3.
It had been established by methylation-structural analysis that dextran fraction S from Leuconostoc mesenteroides NRRL B-1355 has two types of α-d-glucopyranosyl residues that are linked through O-3, i.e., 35% of the residues carry a (1→3)-bond, and ~10% carry a (1→6)-bond in addition to a (1→3)-bond. Two similarly constituted dextrans have now been identified by methylation-structural analysis, namely, the S-type fractions from L. mesenteroides strains NRRL B-1498 and B-1501. The S-type fractions from L. mesenteroides strains B-1355, B-1498, and B-1501 are structurally differentiated from the α-d-glucans (characteristically insoluble) of certain cariogenic Streptococci which also contain both 3-O- and 3,6-di-O-substituted α-d-glucopyranosyl residues. 13C-N.m.r. spectra have been recorded at 90° for both the S- and L-type fractions of strains B-1355, b-1498, and B-1501. The L-type fractions have a low degree of branching through 3,6-di-O-substituted αd-glucopyranosyl residues, but no 3-mono-O-substituted residues. (Dextran fraction S of Streptococcus 5000 g.l.c. instrument equipped with hydrogen-flame detectors. On-column injection of glass columns (2 mm i.d. x 1.23 m) was employed for all such chromatography.The 13C-n.m.r. conditions and methods for preparation of dextran samples have been described(su4). In general, a Varian XL-100-15 spectrometer equipped with a Nicolet TT-100 system was employed in the Fourier-transform mode. Chemical shifts are expressed in p.p.m. relative to external tetramethylsilane, but were actually calculated by reference to the lock signal.  相似文献   

4.
Dextran fractions from NRRL strains Leuconostoc mesenteroides B-1299 and B-1399, and the native, structurally homogeneous dextrans from L. mesenteroides. B-640, B-1396, B-1422, and B-1424, were examined by 13C-n.m.r. spectroscopy at 34 and at 90°, and by g.l.c.-m.s. The 13C-n.m.r. data indicate that the dextrans of this series branch exclusively through α-d-(1→2)-linkages, and differ from one another only in degree of linearity. Diagnostic, 13C-n.m.r resonances, correlating with 2,6-di-O-substituted α-d-glucosyl residues at branch points, have chemical shifts that are independent of the degree of linearity of the dextran. The intensities of these diagnostic resonances from branching residues, compared to the resonances associated with linear dextran (low degree of branching), are generally proportional to the degree of branching established by methylation-fragmentation analysis. The validity of assignment of the diagnostic, 13C-n. m.r. resonances is substantiated by a critical review of methods previously used to provide structural information on dextrans having α-d-(1→2)-linkages, and by evaluation of the corresponding results on the basis of the ultimate standard-methylation structural analysis.  相似文献   

5.
Eight bacterial dextrans from NRRL strainsLeuconostoc mesenteroides B-742, B-1299, B-1355, B-1399, and B-1402, and from Streptobacterium dextranicum B-1254 were examined by methylation structural analysis. Methyl ethers of d-glucose that were present in hydrolyzates of permethylated dextrans were analyzed by combined g.l.c.?m.s. as the peracetylated aldononitriles. The various dextrans differed significantly in frequency and type of chain branching.  相似文献   

6.
Six bacterial dextrans from NRRL strains Leuconostoc mesenteroides B-1299, B-1303. B-1355, and B-1399; Streptobacterium dextranicum B-1254; andA g.l.c. procedure permitted, for the first time. separation of the 2,3,4- from the 2.3.6-tri-O-methyl derivative of d-glucose. Deuteriomethyla  相似文献   

7.
A water-soluble dextran was produced by purified dextransucrase from Leuconostoc mesenteroides NRRL B-640. The dextran was purified by alcohol precipitation. The structure of dextran was determined by FT-IR, 1H NMR, 13C NMR and 2-dimensional NMR spectroscopic techniques. NMR techniques (1D 1H, 13C and 2D HMQC) were used to fully assign the 1H and 13C spectra. All the spectral data showed that the dextran contains d-glucose residues in a linear chain with consecutive α(1  6) linkages. No branching was observed in the dextran structure. The viscosity of dextran solution decreased with the increase in shear rate exhibiting a typical non-Newtonian pseudoplastic behavior. The surface morphology of dried and powdered dextran studied using Scanning electron microscopy revealed the cubical porous structure.  相似文献   

8.
The water-soluble (dextran S) and less water-soluble (dextran L) dextrans elaborated by Leuconostoc mesenteroides NRRL B-1299 contain α-d-glucopyranose residues linked through positions 1 and 6, 1 and 3, as well as 1, 2, and 6. The approximate number of terminal non-reducing d-glucose residues and those linked through positions 1 and 6, 1 and 3, as well as 1, 2, and 6 in the average repeating-unit of dextran S are 5, 4, 1, and 5. The corresponding figures for dextran L are 5, 4, 3, and 5.  相似文献   

9.
Dextransucrase from Leuconostoc mesenteroides B-512 catalyzes the polymerization of dextran from sucrose. The resulting dextran has 95% α-1 → 6 linkages and 5% α-1 → 3 branch linkages. A purified dextransucrase was insolubilized on Bio-Gel P-2 beads (BGD, Bio-Gel-dextransucrase). The BGD was labeled by incubating it with a very low concentration of [14C]sucrose or it was first charged with nonlabeled sucrose and then labeled with a very low concentration of [14C]sucrose. After extensive washings with buffer, the 14C label remained attached to BGD. This labeled material was previously shown to be [14C]dextran and was postulated to be attached covalently at the reducing end to the active site of the enzyme. When the labeled BGD was incubated with a low molecular weight nonlabeled dextran (acceptor dextran) all of the BGD-bound label was released as [14C]dextran whereas essentially no [14C]dextran was released when the labeled BGD was incubated in buffer alone under comparable conditions. The released [14C]dextran was shown to be a slightly branched dextran by hydrolysis with an exodextranase. Acetolysis of the released dextran gave 7.3% of the radioactivity in nigerose. Reduction with sodium borohydride, followed by acid hydrolysis, gave all of the radioactivity in glucose, indicating that the nigerose was exclusively labeled in the nonreducing glucose unit. These results indicated that [14C]dextran was being released from BGD by virtue of the action of the low molecular weight dextran and that this action gave the formation of a new α-1 → 3 branch linkage. A mehanism for branching is proposed in which a C3-OH on an acceptor dextran acts as a nucleophile on C1 of the reducing end of a dextranosyl-dextransucrase complex, thereby displacing dextran from dextransucrase and forming an α-1 → 3 branch linkage. It is argued that the biosynthesis of branched linkages does not require a separate branching enzyme but can take place by reactions of an acceptor dextran with a dextranosyl-dextransucrase complex.  相似文献   

10.
The general properties and specificity of a dextran α-(1→2)-debranching enzyme from Flavobacterium have been examined in order to apply this enzyme to the structural analysis of highly branched dextrans. The optimum pH range and temperature were pH 5.5–6.5, and 45°, respectively. The enzyme was stable up to 40° on heating for 10 min, and over a pH range of 6.5–9.0 on incubation at 4° for 24 h. The effects of various metal ions and chemical reagents have also been examined. The debranching enzyme has a strict specificity for the (1→2)-α-d-glucosidic linkage at branch points of dextrans and related branched oligosaccharides, and produces d-glucose as the only reducing sugar. The degree of hydrolysis of the dextrans by this enzyme and the Km value (mg/mL) were as follows: B-1298 soluble, 25.2%, 0.21; B-1299 soluble, 31.5%, 0.27; and B-1397, 11.8%, 0.91. The debranching enzyme thus has a novel type of specificity as a dextranhydrolase. We have termed this enzyme as dextran α-(1→2)-debranching enzyme, and its systematic name is also discussed.  相似文献   

11.
A structural study of the water-soluble dextran made by Leuconostoc mesenteroides strain C (NRRL B-1298) was conducted by enzymic degradation and subsequent 13C-NMR analysis of the native dextran and its limit dextrins. The α-l,2-debranching enzyme removed almost all of the branched D-glucose residues, and gave a limit dextrin having a much longer sequence of the internal chain length (degree of linearity: n = 24.5 compared with the value of n = 3.3 for the native dextran). The degree of hydrolysis with debranching enzyme corresponded to the content of α-1,2-linkages determined by chemical methods, which suggested that most of the α-l,2-linkages in the dextran B-1298 constituted branch points of a single D-glucose residue. A synergistic increase of susceptibility of the dextran B-1299 was observed by simultaneous use of debranching enzyme and endodex-tranase. 13C-NMR spectral analysis indicated the similarity of structure of dextran B-1298 to that of B-1396, rather than that of B-1299. Occurrence of α-l,3-linkages in the limit dextrin was supported by a newly visualized chemical shift at 83.7 ppm.  相似文献   

12.
Leuconostoc mesenteroides B-1299 dextrans are separated into two kinds: fraction L, which is precipitated by an ethanol concentration of 38%, and fraction S, which is precipitated at an ethanol concentration of 40%. Fraction S dextran contained 35% of -1,2 branch linkages, and fraction L contained 27% -1,2 branch linkage with 1% -1,3 branch linkages. We have isolated mutants constitutive for dextransucrase from L. mesenteroides NRRL B-1299 using ethyl methane sulfonate. The mutants produced extracellular as well as cell-associated dextransucrases on glucose media with higher activities (2.5–4.5 times) than what the parental strain produced on sucrose. Based on Penicillium endo-dextranase hydrolysis, mutant B-1299C dextransucrases produced slightly different dextrans when they were elaborated on a glucose medium and on a sucrose medium. Mutant B-1299CA dextransucrase elaborated on a glucose medium and on a sucrose medium synthesized the same dextran, although the dextran was different from those of other mutants and the parental strain. Mutant B-1299CB dextransucrase, elaborated on a glucose medium and on a sucrose medium, formed different dextrans. Differences in water solubility, susceptibility to endo-dextranase hydrolysis, and the physical appearance of the ethanol precipitated dextrans elaborated by different mutants grown on glucose media and sucrose media were found. All mutant dextransucrases elaborated on a glucose medium bound to Sephadex G-200. After activity staining of nondenaturing sodium dodecyl sulfate—polyacrylamide gel electrophoresis activity bands, 184 and 240 Kd for each enzyme preparation, although each dextransucrase formed different dextran(s).  相似文献   

13.
Dextran T 10, elaborated by Leuconostoc mesenteroides NRRL B-512, was oxidised with aqueous bromine at pH 7.0. The resulting oxodextran and its methoximated derivative were analysed by 13C-n.m.r. spectroscopy. The total amount of keto groups and their positions were established. Assignments of the 13C signals were made by referring to spectra of the corresponding methyl glucosiduloses and an oxodextran having most of the carbonyl groups at position 3 of the glycopyranosyl residues. In accordance with the mechanism for bromine oxidation of mono- and di-saccharides, the glucopyranosyl residues of dextran were oxidised mainly at C-2 and C-4. Over-oxidation resulted in a small proportion of acidic, ring-cleavage products.  相似文献   

14.
Isomalto-oligosaccharides and dextrans of controlled molecular weight of about 10 and 40 kDa were produced using a simple one-step process using engineered L. mesenteroides NRRL B-512F dextransucrase variants. Isomalto-oligosaccharides were produced in a 58% yield by the acceptor reaction with glucose, and reached a degree of polymerization of at least 27 glucosyl units. Reaction conditions for optimal synthesis of dextrans of controlled molecular weight were defined, in respect of initial sucrose concentration and reaction temperature. Thus, we achieved synthesis with impressive yields of 69 and 75% for the 40 and 10 kDa dextran species, respectively. These two dextran sizes are particularly suitable for clinical applications, and are of great industrial demand. Compared with the traditional processes based on chemical hydrolysis and fractionation, which achieve only low yields, the new enzymatic methods offer improvement in quantity, quality and efficiency.  相似文献   

15.
The isomaltodextranase (EC 3.2.1.94) from Arthrobacter globiformis T6 hydrolysed thirteen dextrans to various extents (11?64% after 13 days) at initially large but gradually decreasing rates. Dextran B-1355 fraction S was, unlike the other dextrans, hydrolysed by the dextranase initially at the lowest rate among the dextrans used, but the rate was maintained for a long period with little decrease, so that the hydrolysis reached as high as 85% after 13 days. Paper chromatography of these dextran digests revealed that this dextranase produces in addition to isomaltose, one or two trisaccharides [isomaltose residues substituted by (1 →2)-, (1→3)-, or (1→4)-α-D-glucopyranosyl groups at the non-reducing D-glucopyranosyl residues] from every dextran used. It is evident that the non-(1→6)-linkages of these trisaccharide products constitute the “anomalous” linkages of the corresponding dextrans. The relative amounts of these trisaccharide products appear to indicate the approxima te relative amounts of a particular linkage among the dextrans, or the relative amounts of two kinds of linkages of each dextran. The kinds and the relative amounts of “anomalous” linkages of some dextrans were established on the basis of the trisaccharides produced by isomaltodextranase.  相似文献   

16.
Leuconostoc mesenteroides NRRL B-1426 dextransucrase synthesized a high molecular mass dextran (>2 × 106 Da) with ~85.5% α-(1→6) linear and ~14.5% α-(1→3) branched linkages. This high molecular mass dextran containing branched α-(1→3) linkages can be readily hydrolyzed for the production of enzyme-resistant isomalto-oligosaccharides. The acceptor specificity of dextransucrase for the transglycosylation reaction was studied using sixteen different acceptors. Among the sixteen acceptors used, isomaltose was found to be the best, having 89% efficiency followed by gentiobiose (64%), glucose (30%), cellobiose (25%), lactose (22.5%), melibiose (17%), and trehalose (2.3%) with reference to maltose, a known best acceptor. The β-linked disaccharide, gentiobiose, showed significant efficiency for oligosaccharide production that can be used as a potential prebiotic.  相似文献   

17.
Leuconostoc mesenteroides NRRL B-1355 produces dextrans and alternan from sucrose. Alternan is an unusual dextran-like polymer containing alternating α(1→6)/α(1→3) glucosidic bonds. Cultures were mutagenized with UV and ethyl methanesulfonate, and colony morphology mutants were selected on 10% sucrose plates. Colony morphology variants exhibited changes from parent cultures in the production of one or more glucosyltransferases (GTFs) and glucans. Mutants were characterized by measuring resistance of glucan products to dextranase digestion, by electrophoresis, and by high-pressure liquid chromatography of maltose acceptor products generated from sucrose-maltose mixtures. Some mutants produced almost pure fraction L dextran, and cultures exhibited a single principal GTF band on sodium dodecyl sulfate-acrylamide gels. Other mutants produced glucans enriched for alternan. Colony morphology characteristics (size, smoothness, and opacity) and liquid culture properties (clumpiness, color, and viscosity in 10% sucrose medium) were explained on the basis of GTF production. Three principal GTF bands were detected.  相似文献   

18.
A newly isolated soil-actinomycete, Actinomadura strain R10 (NRRL B-11411), produces an extracellular isomaltodextranase (optinal pH, 5.0) that was purified to homogeneity. It exolytically releases isomaltose and a minor trisaccharide product,α-d-Glcp-(1→3)-α-d-Glcp, from dextran B-512 and, in addition, forms transient transisomaltosylation products. This pattern of products is qualitatively similar to that previously reported for the isomaltodextranase (EC 3.2.1.94, optimal pH, 4-0) of Arthrobacter globiformis T6 (NRRL B-4425). The Arthrobacter isomaltodextranase is most active on the (1→6)-α-d-glucopyranosidic linkage, but the relative activity increases with the degrees of polymerization of isomalto-oligosaccharide substrates. In contrast, the relative activity of Actinomadura isomaltodextranase is almost constant throughout the same series of substrates, and is much higher on 3 O- and 4-O-α-isomaltosyl-oligosaccharides than that exhibited by the Arthrobacter enzyme; the activity of Actinomadura isomaltodextranase on the α-(1→4) linkage is 3-4 times greater than on the α-(1→6). These results indicate that, generically, the bacterial isomaltodextranase is a glycanase, whereas the actinomycetal enzyme is a glycosidase. This difference is reflected in the hydrolysis of dextrans, especially of dextran B-1355 (fraction S), which has a high content of unbranched α-(1→3) linked residues. In the digest of this dextran with Arthrobacter isomaltodextranse, short-chain fragments accumulated that were absent when the Actinomadura enzyme was employed.  相似文献   

19.
Certain isolates of the bacterium Leuconostoc mesenteroides, such as strain NRRL B-1355, have been found to produce alternan, a polysaccharide with unique properties of potentially high commercial value. However, all of these isolates also produce significant amounts of the polysaccharide dextran, which would be costly to separate from alternan on a commercial basis. We developed a rapid screening method for the isolation of L. mesenteroides mutants that produce elevated proportions of alternan to dextran. With this technique, a set of mutants of strain NRRL B-1355 was isolated, including strain NRRL B-21138, which produced a high proportion of alternan to dextran and showed complete genetic stability after more than 60 generations.  相似文献   

20.
The open reading frame of dsrE563, a dextransucrase gene obtained from a constitutive mutant (CB4-BF563) of Leuconostoc mesenteroides B-1299, consists of 8,511 bp encoding 2,836 amino acid residues. DsrE563 contains two catalytic domains (CD1 and CD2). Two truncated derivative mutants DsrE563ΔCD2ΔGBD (DsrE563-1) and DsrE563ΔCD2ΔVR (DsrE563-2) of DsrE563 were constructed and expressed using the pRSETC vector in Escherichia coli. The derivatives DsrE563-1 (deletion of 1,620 amino acids from the C-terminus) and DsrE563-2 (deletion of 1,258 amino acids from the C-terminus and 349 amino acids from the N-terminus) were expressed as active enzymes. Both enzymes synthesized less-soluble dextran, mainly containing α-1,6 glucosidic linkage. The synthesized less-soluble dextran also had a branched α-1,3 linkage. DsrE563-2 showed 4.5-fold higher dextransucrase activity than that of DsrE563-1 and showed higher acceptor reaction efficiency than that of dextransucrase from L. mesenteroides 512 FMCM when various mono or disaccharides were used as acceptors. Thus, the glucan-binding domain was important for both enzyme expression and dextransucrase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号