首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Benzoylation of L-rhamnono-1,5-lactone (1) with an excess of benzoyl chloride and pyridine for 16 h afforded 2,4-O-benzoyl-3,6-dideoxy-L-erythro-hex-2-enono-1,5-lactone (2). Catalytic hydrogenation of 2 was stereoselective and gave crystalline 2,4-di-O-benzoyl-3,6-dideoxy-L-arabino-hexono-1,5-lactone (3). Reduction of the lactone 3 with disiamylborane afforded 2,4-di-O-benzoyl-3,6-dideoxy-L-arabino-hexopyranose (4) which, on debenzoylation, gave 3,6-dideoxy-L-arabino-hexose (ascarylose) (7) in good overall yield. The sugar was identified as the corresponding alditol (ascarylitol) and by convertion into methyl 3,6-dideoxy-α-L-arabino-hexopyranoside (methyl ascaryloside, 6).  相似文献   

2.
The synthesis is described of 3-amino-2,3-dideoxy-l-arabino-hexose (10), methyl 2,3-dideoxy-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (17), methyl 3-amino-2,3-dideoxy-α-l-ribo-hexopyranoside (21), methyl 2,3-dideoxy-3-trifluoroacetamido-α-l-xylo-hexopyranoside (26), and certain derivatives from methyl 4,6-O-benzylidene-2-deoxy-α-l-arabino-hexopyranoside (3). Conversion of 2-deoxy-l-arabino-hexose into 3 by modified, standard procedures, and on a large scale, gave a 75% yield.  相似文献   

3.
Reduction of 1,6-anhydro-3,4-dideoxy-β-D-glycero-hex-3-enopyranos-2-ulose (levoglucosenone) with lithium aluminium hydride afforded principally 1,6-anhydro-3,4-dideoxy-β-D-threo-hex-3-enopyranose (3), which was converted into 3,4-dihydro-2(S)-hydroxymethyl-2H-pyran (8) following acid-catalysed methanolysis and reductive rearrangement of the resulting α-glycoside 4 with lithium aluminium hydride. 1,6-Anhydro-3,4-dideoxy-2-O-toluene-p-sulphonyl-β-D-threo-hexopyranose, prepared from 3, reacted slowly with sodium azide in hot dimethyl sulphoxide to give 1,6-anhydro-2-azido-2,3,4-trideoxy-β-D-erythro-hexopyranose, which was transformed into a mixture of methyl 2-acetamido-6-O-acetyl-2,3,4-trideoxy-α-D-erythro-hexopyranoside (10) and the corresponding β anomer following acid-catalysed methanolysis, catalytic reduction, and acetylation. Acid treatment of methyl 4,6-O-benzylidene-3-deoxy-α-D-erythro-hexopyranosid-2-ulose yielded the enone 15, which was readily transformed into methyl 6-O-acetyl-3,4-dideoxy-α-D-glycero-hexopyranosid-2-ulose (19). Procedures for the conversions of DL-8, 10, and 19 into methyl 2,6-diacetamido-2,3,4,6-tetradeoxy-α-D-erythro-hexopyranoside (methyl N,N′-di-acetyl-α-purpurosaminide C) have already been described.  相似文献   

4.
Addition of methylmagnesium iodide to methyl 2,3,6-trideoxy-3-trifluoro-acetamido-α-l-threo-hexopyranosid-4-ulose (3) gave methyl 2,3,6-trideoxy-4-C-methyl-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (4) and its l-arabino analogue, depending upon the reaction temperature and the solvent. The corresponding 4-O-methyl derivatives were obtained by treatment of 4 and 5 with diazomethane in the presence of boron trifluoride etherate. Treatment of 4 with thionyl chloride, followed by an alkaline work-up, gave methyl, 2,3,4,6-tetradeoxy-4-C-methylene-3-trifluoro-acetamido-α-l-threo-hexopyranoside (8), which was stereoselectively reduced to methyl 2,3,4,6-tetradeoxy-4-C-methyl-3-trifluoroacetamido-α-l-arabino-hexopyranoside. Epoxidation of 8 with 3-chloroperoxybenzoic acid gave the corresponding 4,41-anhydro-4-C-hydroxymethyl-l-lyxo derivative (10), which was also prepared by treatment of 3 with diazomethane. Azidolysis of 10, followed by catalytic hydrogenation and N-trifluoroacetylation, gave methyl 2,3,6-trideoxy-3-trifuloroacetamido-4-C-trifluoroacetamidomethyl-α-l-lyxo-hexopyranoside.  相似文献   

5.
A convenient preparative route involving eleven steps starting from D-glucose is described for the synthesis of D-ristosamine (15) hydrochloride. Methyl 2-deoxy-β-D-arabino-hexopyranoside, prepared from 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-hex- 1-enitol, was benzylidenated, and the product mesylated to give methyl 4,6-O-benzylidene-2-deoxy-3-O-methylsulfonyl-β-D-arabino-hexopyranoside. Azidolysis of this compound and subsequent opening of the 1,3-dioxane ring with N-bromosuccinimide gave methyl 3-azido-4-O-benzoyl-6-bromo-2,3,6-trideoxy-βD-ribo-hexopyranoside. Simultaneous reduction of the azido and bromo groups gave a mixture that was benzoylated to give methyl N,O-dibenzoyl-β-D-ristosaminide and then hydrolyzed to 15 hydrochloride (3-amino-2,3,6-trideoxy-D-ribo-hexopyranose hydrochloride).  相似文献   

6.
Anti-Markovnikov hydration of the olefinic bond of 5,6-dideoxy-1,2-O-isopropylidene-3-O-p-tolylsulfonyl-α- d-xylo-hex-5-enofuranose (4) and methyl 5,6-dideoxy-2,3-di-O-p-tolylsulfonyl-α-l-arabino-hex-5-enofuranoside (11) by the addition of iodine trifluoroacetate, followed by hydrogenation in the presence of a Raney nickel catalyst in ethanol containing triethylamine, afforded 5-deoxy-1,2-O-ísopropylidene-3-O-p-tolylsulfonyl-α-d-xylo-hexofuranose (6) and methyl 5-deoxy-2,3-di-O-p-tolylsulfonyl-α-d-arabino-hexofuranoside (14), respectively. 5-deoxy-d-xylo-hexose and 5-deoxy-l-arabino-hexose were prepared from 6 and 14, respectively, by photolytic O-detosylation and acid hydrolysis. Syntheses of 9-(5-deoxy-β-d-xylo-hexofuranosyl)-adenine and 9-(5-deoxy-α-l-arabino-hexofuranosyl)adenine are also described. Application of the sodium naphthalene procedure, for O-detosylation, to 11 is reported in connection with an alternative synthetic route to methyl 5-deoxy-α-l-arabino- hexofuranoside.  相似文献   

7.
N-Acetylepidaunosamine (3-acetamido-2,3,6-trideoxy-d-ribo-hexopyranose) was converted into the diethyl dithioacetal and this was cyclized with HgCi2, HgO, and MeOH, to give methyl 3-acetamido-2,3,6-trideoxy-α- and -β-d-ribo-hexofuranoside (4 and 5). These anomers were acetylated or (p-nitrobenzoyl)ated, and the esters were subjected to acetolysis, to afford 3-acetamido-1,5-di-O-acetyl-2,3,6-trideoxy-d-ribo-hexofuranose and 3-acetamido-1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-d-ribo-hexofuranose, respectively. Alternatively, compounds 4 and 5 were hydrolyzed to the free bases with barium hydroxide, and these were converted into the trifluoroacetamido derivatives which, on (p-nitrobenzoyl)ation and acetolysis, afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-d-ribo-hexofuranose. To prepare the corresponding daunosamine derivative, 2,3,6-trideoxy-3-(trifluoroacetamido)-l-lyxo-hexopyranose was converted into the diethyl dithioacetal, and this was cyclized in the same way, to afford methyl 2,3,6-trideoxy-3-(trifluoroacetamido)-α- and -β-l-lyxo-hexofuranoside. On (p-nitrobenzoyl)ation and acetolysis, both afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-l-lyxo-hexofuranose.  相似文献   

8.
Methyl 4,6-O-benzylidene-2-deoxy-α-D-ribo-hexopyranoside (1) is converted into methyl 3,4-di-O-benzoyl-6-bromo-2,6-dideoxy-α-D-ribo-hexopyranoside (3) via the 3-O-benzoyl derivative (2) of 1 by subsequent treatment with N-bromosuccinimide. Compound 3 is the key intermediate in high-yielding, preparative syntheses of the title dideoxy sugars, which are constituents of many antibiotics. Dehydrohalogenation of 3 affords the 5,6-unsaturated glycoside 7. which undergoes stereospecific reduction by hydrogen with net inversion at C-5 to give methyl 3,4-di-O-benzoyl-2,6-dideoxy-β-L-lyxo-hexopyranoside (8), whereas reductive dehalogenation of 3 provides the corresponding D-ribo derivative 4. The unprotected glycosides 9 (L-lyxo) and 5 (D-ribo) are readily obtained by catalytic transesterification, and mild, acid hydrolysis gives the crystalline title sugars 10 (L-lyxo) and 6 (D-ribo) in 45 and 57% overall yield from 1 without the necessity of chromatographic purification at any of the steps.  相似文献   

9.
2,6-Anhydro-1-deoxy-1-diazo-D-glycero-L-manno-heptitol (2) decomposes in 0.01M methanolic sodium methoxide with a half-life of approx. 18 min. Decomposition in aqueous solution is too rapid for spectrophotometric measurement. Seven products could be identified in methanolic and aqueous reaction mixtures. 2,6-Anhydro-1-deoxy-D-galacto-hept-1-enitol (6), 2,7-anhydro-1-deoxy-β-D-galacto-heptulopyranose (10), and 4-O-vinyl-D-lyxose (12) are products of rapid intramolecular reactions. The major portion consists of the direct solvolysis products 2,6-anhydro-1-O-methyl-D-glycero-L-manno-heptitol (3) and 2,6-anhydro-D-glycero-L-manno-heptitol (5).  相似文献   

10.
Treatment of benzyl 2-acetamido-3-O-benzyl-2,6-dideoxy-4-O-(methylsulfonyl)-α-D-glucopyranoside (1) with sodium azide in hexamethylphosphoric triamide gave the 4-azido-α-D-galacto derivative (2), which was converted into benzyl 2,4-di-acetamido-3-O-benzyl-2,3,6-trideoxy-α-D-galactopyranoside (3) by hydrogenation and subsequent acetylation. Hydrogenolysis of 3 at atmospheric pressure afforded benzyl 2,4-diacetamido-2,4,6-tridcoxy-α-D-galactopyranoside (4), which was acetylated to give the 3-O-acetyl derivative (5). The n.m.r. spectrum of 5 was in agreement with the assigned structure and different from that of benzyl 2,4-di-acetamido-3-O-acetyl-α-D-glucopyranoside (9), which was prepared from the known benzyl 2,4-diacetamido-3-O-benzyl-2,4,6-trideoxy-α-D-glucopyranoside. Catalytic hydrogenolysis of 4 gave 2,4-diacetamido-2,4,6-trideoxy-D-galactose (6).  相似文献   

11.
Methyl 4,6-O-benzylidene-2-deoxy-3-C-methyl-α-d-arabino-hexopyranoside (4) was prepared from methyl 4,6-O-benzylidene-2,3-dideoxy-3-C-methylene-α-d-erythro-hexopyranoside (1b) and from methyl 4,6-O-benzylidetic-3 C-methyl-α-d-gluco-hexopyranoside (6a) by two different methods. Synthesis of d-evermicose3 (10 (2,6-dideoxy-3-C-methyl-d-arabino-hexose) was then achieved in four steps from 4.  相似文献   

12.
Oxidation of 1,3,4,6-tetra-O-benzoyl-α- and β-D-glucopyranose gave the tetra-O-benzoyl-α- and -β-D-arabino-hexopyranosuloses ( and β), from which benzoic acid was readily eliminated to give the anomeric tri-O-benzoyl-4-deoxy-D-glycero-hex-3-enopyranosuloses ( and β). The anomeric 1-O-acetyl-tri-O-benzoyl-D-arabino-hexopyranosuloses ( and β) were obtained as very unstable syrups which readily lost benzoic acid. Treatment of tetra-O-benzoyl-2-O-benzyl-D-glucopyranose (1) with hydrogen bromide gave 3,4,6-tri-O-benzoyl-α-D-glucopyranosyl bromide (5) in one step.  相似文献   

13.
Deamination of methyl 5-amino-5,6-dideoxy-2,3-O-isopropylidene-α-L-talofuranoside (6) with sodium nitrite in 90% acetic acid at ≈0° gave methyl 6-deoxy-2,3-O-isopropylidene-α-L-talofuranoside (8a) and methyl 6-deoxy-2,3-O-isopropylidene-β-D-allofuranoside (9a) (combined yield, 12.3%), the corresponding 5-acetates 8b (2.9%) and 9b (26.4%), and the unsaturated sugar methyl 5,6-dideoxy-2,3-O-isopropylidene-β-D-ribo-hex-5-enofuranoside (10) (43.5%). Similar deamination of methyl 5-amino-5,6-dideoxy-2,3-O-isopropylidene-β-D-allofuranoside (7) gave 8a and 9a (combined yield, 20.4%), 8b (12.5%), 9b (25.8%), 10 (7.7%), and the rearranged products 6-deoxy-2,3-O-isopropylidene-5-O-methyl-L-talofuranose (13a, 17.5%) and the corresponding 1-acetate 13b (14.1%). A synthesis of 13a was accomplished by successive methylation and debenzylation of the conveniently prepared benzyl 6-deoxy-2,3-O-isopropylidene-α-L-talofuranoside (15b). Differences between the two sets of deamination products can be rationalized by assuming that the carbonium-ion intermediate reacts in the initial conformation assumed, before significant interconversion to other conformations occurs.  相似文献   

14.
Treatment of 2,3,6-trideoxy-1,4-di-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-l-lyxo-hexopyranose (1) with benzyl 2,3-dideoxy-d-glycero-pentopyranoside and p-toluenesulfonic acid gave a mixture of benzyl 2,3,6-trideoxy-4-O-p-nitrobenzoyl-3- (trifluoroacetamido)-l-lyxo-hexopyranoside (49%) and benzyl 2,3-dideoxy-4-O-[2,3,6-trideoxy-4-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-α-l-lyxo-hexopyranosyl]-d-glycero-pentopyranoside (4, 20 %). The structure of the disaccharide 4 was confirmed by a detailed, mass-spectrometric analysis in three modes, namely, negative- and positive-ion, chemical ionization, and electron impact. Similar treatment of the bis(p-nitrobenzoate) 1 with ethyl 2,3-dideoxy-d-glycero-pentopyranoside gave the ethyl glycoside and the desired disaccharide, showing that the transglycosylation is not restricted to benzyl glycosides. Removal of the p-nitrobenzoyl and the benzyl groups from 4 gave the disaccharide 2,3-dideoxy-4-O-(2,3,6-trideoxy-3-trifluoroacetamido-α-l-lyxo-hexopyranosyl)-d-glycero-pentopyranose.  相似文献   

15.
Methyl 4,6-O-benzylidene-2-deoxy-α-d-erythro-hexopyranosid-3-ulose reacted with potassium cyanide under equilibrating conditions to give, initially, methyl 4,6-O-benzylidene-3-C-cyano-2-deoxy-α-d-ribo-hexopyranoside (7), which, because it reverted slowly to the thermodynamically stable d-arabino isomer, could be crystallised directly from the reaction mixture. The mesylate derived from the kinetic product 7 could be converted by published procedures into methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α-d-arabino-hexopyranoside, which was transformed into methyl N-acetyl-α-d-vancosaminide on inversion of the configuration at C-4. A related approach employing methyl 2,6-dideoxy-4-O-methoxymethyl-α-l-erythro-hexopyranosid-3-ulose gave the kinetic cyanohydrin and thence, via the spiro-aziridine 27, methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α-l-arabino-hexopyranoside, a known precursor of methyl N-acetyl-α-l-vancosaminide.  相似文献   

16.
Addition of methylmagnesium iodide to methyl 2,3,6-trideoxy-3-trifluoro-acetamido-α-l-threo-hexopyranosid-4-ulose (3) gave methyl 2,3,6-trideoxy-4-C-methyl-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (4) and its l-arabino analogue, depending upon the reaction temperature and the solvent. The corresponding 4-O-methyl derivatives were obtained by treatment of 4 and 5 with diazomethane in the presence of boron trifluoride etherate. Treatment of 4 with thionyl chloride, followed by an alkaline work-up, gave methyl, 2,3,4,6-tetradeoxy-4-C-methylene-3-trifluoro-acetamido-α-l-threo-hexopyranoside (8), which was stereoselectively reduced to methyl 2,3,4,6-tetradeoxy-4-C-methyl-3-trifluoroacetamido-α-l-arabino-hexopyranoside. Epoxidation of 8 with 3-chloroperoxybenzoic acid gave the corresponding 4,41-anhydro-4-C-hydroxymethyl-l-lyxo derivative (10), which was also prepared by treatment of 3 with diazomethane. Azidolysis of 10, followed by catalytic hydrogenation and N-trifluoroacetylation, gave methyl 2,3,6-trideoxy-3-trifuloroacetamido-4-C-trifluoroacetamidomethyl-α-l-lyxo-hexopyranoside.  相似文献   

17.
6-Deoxy-2,3,5-tri-O-(p-nitrobenzoyl)-β-d-allo- and -α-l-talo-furanosyl bromide (6 and 11) have been synthesized from methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside (1). Treatment of 1 with methyl Grignard reagent, followed by (p-nitrobenzoyl)ation, afforded two 5-epimers, methyl 6-deoxy-2,3-O-isopropylidene-5-O-(p-nitrobenzoyl)-β-d-allo- and -α-l-talo-furanosides (3 and 8) which were fractionally recrystallized. The l-talo isomer (8) separated first, and was treated with acid to remove the isopropylidene group, the product (p-nitrobenzoyl)ated, and the ester reacted with hydrogen bromide in acetic acid, to afford crystalline compound 11. The mother liquor from the fractional recrystallization was treated with acid, whereby methyl 6-deoxy-5-O-p-nitrobenzoyl)-d-allofuranoside was isolated. It was (p-nitrobenzoyl)ated, and the ester treated with hydrogen bromide in acetic acid, to afford crystalline bromide 6.  相似文献   

18.
Evernitrose (2,3,6-trideoxy-3-C-methyl-4-O-methyl-3-nitro-L-arabino-hexopyranose) was synthesized from methyl 2,6-dideoxy-4-O-methyl-α-L-erythro-hexopyranosid-3-ulose (2) through introduction of an amino group attached to the tertiary branching carbon by the method of Bourgeois, and subsequent oxidation of the amino group by m-chloroperoxybenzoic acid to a nitro group. 3-Cyano-3-O-mesylation of 2 by Bourgeois's method gave exclusively the desired product having the L-ribo configuration; furthermore, the β anomer of 2 gave the L-ribo and L-arabino products in the ratio of 1:2. The latter compound was converted into 3-epi-evernitrose by a similar sequence of reactions.  相似文献   

19.
1,2,4,6-Tetra-O-acetyl-3-O-benzyl-α-D-mannopyranose (7) was obtained in good yield from 3,4,6-tri-O-benzyl-1,2-O-(1-methoxyethylidene)-β-D-mannopyranose (1) by acetolysis. Hydrogenolysis of 7 afforded 1,2,4,6-tetra-O-acetyl-α-D-mannopyranose which is a versatile intermediate for the preparation of other 3-O-substituted D-mannoses, such as 3-O-methyl-D-mannose and 3-O-α-D-mannopyranosyl-D-mannose. 3,4-Di-O-methyl-D-mannose was readily prepared from 1,2,6-tri-O-acetyl-3,4-di-O-benzyl-α-D-mannopyranose, which was also obtained from 1 by controlled acetolysis.  相似文献   

20.
3,4,6-Tri-O-acetyl-d-galactal, on treatment in 1,2-dichloroethane with alcohols and stannic chloride as catalyst, readily undergoes allylic rearrangement-substitution, forming alkyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-threo-hex-2-enopyranosides in yields of 43-92%. Alkyl 3,4,6-tri-O-acetyl-2-deoxy-αβ-d-lyxo-hexopyranosides are formed as side-products in yields of 2-14 %. Stannic chloride-catalysis is also useful in allylic rearrangement of 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-arabino- hex-l-enitol (3,4,6-tri-O-acetyl-d-glucal) which, with methanol or ethanol, affords the corresponding alkyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranosides in yields of 83 and 94%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号