首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human intestinal maltase (HMA) is an ??-glucosidase responsible for the hydrolysis of ??-1,4-linkages from the non-reducing end of malto-oligosaccharides. HMA has become an important target in the treatment of type-2 diabetes. In this study, epigallocatechin gallate (EGCG) and EGCG glucoside (EGCG-G1) were identified as inhibitors of HMA by an in vitro assay with IC50 of 20 ± 1.0 and 31.5 ± 1.0 ??M, respectively. A Lineweaver-Burk plot confirmed that EGCG and EGCG-G1 were competitive inhibitors of maltose substrate against HMA and inhibition kinetic constants (K i ) calculated from a Dixon plot were 5.93 ± 0.26 and 7.88 ± 0.57 ??M, respectively. Both EGCG and EGCG-G1 bound to the active site of HMA with numerous hydrophobic and hydrogen bond interactions.  相似文献   

2.
3.
A galactan, isolated from the unicellular organism Prototheca zopfii, and a glycoprotein from a hyphal cell-wall fraction of the fungus Pithomyces chartarum have been oxidised by a D-galactose oxidase preparation from Dactylium dendroides. The oxidised polymers were subsequently reduced with sodium borotritide. The site of oxidation was identified as C-6 of non-reducing D-galactofuranosyl residues in both polymers.  相似文献   

4.
Batch kinetics for sorbitol to sorbose bioconversion was studied at 20% sorbitol concentration. The culture featured 90% conversion of sorbitol to sorbose in 20 hours. Increasing the initial substrate concentration in the bioreactor decreased the culture specific growth rate. At 40% initial sorbitol concentration no culture growth was observed. The batch kinetics and substrate inhibition studies were used to develop the Mathematical Model of the system. The model parameters were identified using the original batch kinetic data (S o =20%). The developed mathematical model was adopted to fed-batch cultivation with the exponential nutrient feeding. The fed-batch model was simulated and implemented experimentally. No substrate inhibition was observed in the fed-batch mode and it provided an overall productivity of 12.6?g/l-h. The fed-batch model suitably described the experimentally observed results. The model is ready for further optimization studies.  相似文献   

5.
Pseudomonas putida (MTCC 1194) has been used to degrade phenol in water in the concentration range 100–1000?ppm. The inhibition effects of phenol as substrate have become predominant above the concentration of 500?ppm (5.31?mmoles/dm3). The optimum temperature and initial pH required for maximum phenol biodegradation were 30?°C and 7.00 respectively. From the degradation data the activation energy (E a ) was found to be equal to 13.8?kcal/g mole substrate reacted. The most suitable inoculum age and volume for highest phenol degradation were 12?hrs and 7% v/v respectively. Surfactants had negligible effect on phenol biodegradation process for this microorganism. Monod model has been used to interpret the free cell data on phenol biodegradation. The kinetic parameters have been estimated upto initial concentration of 5.31?mmoles/dm3. μ max and K S gradually increased with higher concentration of phenol. However, beyond the phenol concentration of 5.31?mmoles/dm3, the inhibition became prominant. The μ max has been to be a strong function of initial phenol concentration. The simulated and the experimental phenol degradation profiles have good correspondence with each other.  相似文献   

6.
The purification of olive mill wastewaters (OMW) is investigated by a single anaerobic digestion in a batch reactor containing immobilized microorganisms, and by the combination of an ozonation pretreatment followed by an anaerobic digestion. In the single anaerobic digestion the removal of the COD is determined and the methane yield coefficient, which is the best measure of the extent of transformation of the biodegradable substrate, is also obtained, its value being 194?ml CH4/g COD. A kinetic study is performed by using the Monod model combined with the Levenspiel model, due to the presence of inhibition effects. Both models lead to the determination of the kinetic parameters of this anaerobic treatment: kinetic constants, critical substrate concentration of inhibition and inhibitory parameter. In the combined process, the ozonation pretreatment of OMW achieves a great reduction in the phenolic compounds, leading to a significant increase in the methane yield coefficient in the following anaerobic digestion, its value being 266?ml CH4/g COD.  相似文献   

7.
A real-time, on-line extended Kalman filter was used to describe and monitor the growth of Escherichia coli on glycerol. The growth of E. coli showed an inhibition kinetics with μmax=0.806/h, KS=0.68 g/l and Ki=87.4 g/l. As a feeding strategy, the conventional DO-stat with a DDC-PID control method, in which the dissolved oxygen concentration is maintained at a desired level by varying the substrate feedrate, was employed. The Kalman filter was based on an unstructured mathematical model and on-line measured data. The mathematical model comprised of mass balances of the biomass and substrate as well as kinetic and stoichiometric data which were measured prior to the process. For biomass concentration up to 50 g dry weight/l, the estimation of the process was rather accurate. At higher biomass concentration, product formation, indicated by an intense brown coloring of the fermentation broth, occured. Since the effect of this product on biomass production was not included in the mathematical model, the estimated data diverged from the experimental data at biomass concentrations greater than 50 g dry weight/l.  相似文献   

8.
Lysyl oxidase (LOX) is implicated in several extracellular matrix related disorders, including fibrosis and cancer. Methods of inhibition of LOX in vivo include antibodies, copper sequestration and toxic small molecules such as β-aminopropionitrile. Here, we propose a novel approach to modulation of LOX activity based on the kinetic isotope effect (KIE). We show that 6,6-d2-lysine is oxidised by LOX at substantially lower rate, with apparent deuterium effect on Vmax/Km as high as 4.35 ± 0.22. Lys is an essential nutrient, so dietary ingestion of D2Lys and its incorporation via normal Lys turnover suggests new approaches to mitigating LOX-associated pathologies.  相似文献   

9.
The method of kinetic analysis is developed to obtain the maximum velocity (Vm), the Michaelis constant (Km) and the parameters characterizing the inhibitors in an impure enzyme reaction, contaminated with one of four types of inhibitor (competitive, noncompetitive, uncompetitive and mixed-type). Although the reaction rate decreases with the increasing concentration of the enzyme sample containing an inhibitor, the double-reciprocal plot of the rate against the sample concentration becomes linear. The slopes of these linear plots at several different concentrations of substrate provide Km and the specific enzyme activity, which is proportional to Vm, in the sample. These linear straight lines intersect in a point, of which the coordinates give the unique parameters for the inhibitor. To prove the validity of this kinetic method, the model experiments were carried out with acetylcholinesterase and its inhibitors, phenyltrimethylammonium and trimethylammonium. The present method was applied to the measurement of the specific activity of galactosylceramide galactosidase in the mouse cerebral homogenate. In addition, a kinetic method is indicated for the inhibition of an enzymatic reaction by a contaminant which binds the substrate to reduce the fraction available to the enzyme.  相似文献   

10.
Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 Å. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K0.5 for fructose-6-P and a decrease in the apparent kcat as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (nH of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.  相似文献   

11.
《BBA》2022,1863(2):148508
In the model purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides, solar energy is converted via coupled electron and proton transfer reactions within the intracytoplasmic membranes (ICMs), infoldings of the cytoplasmic membrane that form spherical ‘chromatophore’ vesicles. These bacterial ‘organelles’ are ideal model systems for studying how the organisation of the photosynthetic complexes therein shape membrane architecture. In Rba. sphaeroides, light-harvesting 2 (LH2) complexes transfer absorbed excitation energy to dimeric reaction centre (RC)-LH1-PufX complexes. The PufX polypeptide creates a channel that allows the lipid soluble electron carrier quinol, produced by RC photochemistry, to diffuse to the cytochrome bc1 complex, where quinols are oxidised to quinones, with the liberated protons used to generate a transmembrane proton gradient and the electrons returned to the RC via cytochrome c2. Proximity between cytochrome bc1 and RC-LH1-PufX minimises quinone/quinol/cytochrome c2 diffusion distances within this protein-crowded membrane, however this distance has not yet been measured. Here, we tag the RC and cytochrome bc1 with yellow or cyan fluorescent proteins (YFP/CFP) and record the lifetimes of YFP/CFP Förster resonance energy transfer (FRET) pairs in whole cells. FRET analysis shows that that these complexes lie on average within 6 nm of each other. Complementary high-resolution atomic force microscopy (AFM) of intact, purified chromatophores verifies the close association of cytochrome bc1 complexes with RC-LH1-PufX dimers. Our results provide a structural basis for the close kinetic coupling between RC-LH1-PufX and cytochrome bc1 observed by spectroscopy, and explain how quinols/quinones and cytochrome c2 shuttle on a millisecond timescale between these complexes, sustaining efficient photosynthetic electron flow.  相似文献   

12.
The rate of l-ascorbate catabolism in plants often correlates positively with the rate of cell expansion. The reason for this correlation is difficult to explore because of our incomplete knowledge of ascorbate catabolism pathways. These involve enzymic and/or non-enzymic oxidation to dehydroascorbic acid (DHA), which may then be hydrolysed to 2,3-diketogulonate (DKG). Both DHA and DKG were susceptible to further oxidation under conditions of pH and H2O2 concentration comparable with the plant apoplast. The kinetics of their oxidation and the identity of some of the products have been investigated here. DHA, whether added in pure form or generated in situ by ascorbate oxidation, was oxidised non-enzymically to yield, almost simultaneously, a monoanion (cyclic-oxalyl-threonate; cOxT) and a dianion (oxalyl-threonate; OxT). The monoanion was resistant to periodate oxidation, showing that it was not oxalic threonic anhydride. The OxT population was shown to be an interconverting mixture of 3-OxT and 4-OxT, differing in pKa. The 3-OxT appeared to be formed earlier than 4-OxT, but the latter predominated at equilibrium. DKG was oxidised by H2O2 to two partially characterised products, one of which was itself further oxidised by H2O2 to yield threonate. The possible occurrence of these reactions in the apoplast in vivo and the biological roles of vitamin C catabolites are discussed.  相似文献   

13.
A kinetic study of the effect of antimycin A on succinate oxidase from plant mitochondria produced sigmoidal curves for the reduction of cytochromes b560 and b585 and for the inhibition of succinate oxidase. In the stationary state the interaction of the various components of the respiratory chain (flavins, ubiquinone, cytochromes…) occurs in a sequential mode which allows the application of simple equations utilizing rate constants and cytochrome concentrations. In these equations, it is assumed that there exists an excess of ubiquinone relative to other components of the respiratory chain as suggested by Kröger & Klingenberg (1970) and that the reoxidation of b cytochromes is fast. The inhibition by antimycin A, characterized by non-linear inhibition curves for succin-oxidase and inhibitor fixation in complex III on a component other than cytochrome c1, is interpreted in terms of this model. This hypothesis presupposes the existence of an F factor between cytochrome b560 and cytochrome c1 as suggested by other authors. Utilizing these equations, theoretical curves for the inhibition of the reduction of cytochrome b560 have been constructed and the results agree with the experimental data. The kinetic behavior of cytochrome b566 during the induction of anaerobiosis suggests that it is not directly involved in the electron transfer chain but rather is either in thermodynamic equilibrium with cytochrome b560 or in a shunt between cytochrome b560 and factor F. From the experimental data, an equation is derived for the inhibition of the reduction of cytochrome b566 by antimycin A. The actual effects of ATP and mClCCP on succinoxidase agree well with those predicted by the model.  相似文献   

14.
In this study, a novel method of gradient dilution feeding substrate (GDFS) was established to improve the yield of angiotensin-converting enzyme (ACE) inhibitory peptides from milk protein. The hydrolysis process stability, enzymatic efficiency and kinetics of the method were studied and compared with traditional feeding modes, viz., adding water after feeding substrate or constant concentration feeding substrate. Results showed that the GDFS mode achieved the highest membrane flux and lowest fluctuation of protein concentration in the reactor. Moreover, the GDFS maximized protein conversion rate, yield of peptides, and ACE-inhibitory activity, with their values of 67.58 %, 138.51 g/(g*Neutrase), and 0.74 mg/mL (IC50), respectively. In further study, the kinetic model of GDFS mode was successfully established with KM of 69.481 g/L and Vmax of 0.752 g·L−1 min−1. Based on the optimum condition of the kinetic model, the practical longest runtime was 720 min. Obtained results suggested that GDFS mode could be used as an alternative method in the preparation of high-yield bioactive peptides.  相似文献   

15.
The uptake of a specific 14C-amino acid by the heterotrophic microorganisms in the epilimnion of an eutrophic lake was influenced by the presence of other amino acids. The effect of unlabeled serine on 14C-glycine uptake was shown to be caused by competitive inhibition, which changed the interpretation of the kinetic parameters, the turnover time, Tt, and the sum of a transport constant, (Kt + (Sn), and the natural substrate concentration. The maximum velocity of uptake, Vmax, is unaffected by the competitive inhibition.  相似文献   

16.
Kinetics of microperoxidase-11 (MP-11) as a heme–peptide enzyme model in oxidation reaction of guaiacol (AH) by hydrogen peroxide was studied in the presence of amino acids, taking into account the inactivation of MP-11 during reaction by its suicide substrate, H2O2. Reliability of the kinetic equation was evaluated by non-linear mathematical fitting. Fitting of experimental data into a new integrated kinetic relation showed a close match between the kinetic model and the experimental data. Indeed, it was found that the mechanism of suicide-peroxide inactivation of MP-11 in the presence of amino acids is different from MP-11 and/or horseradish peroxidase. In this mechanism, amino acids compete with hydrogen peroxide for the sixth co-ordination position of iron atom in the heme group through a competitive inhibition mechanism.The proposed model can successfully determine the kinetic parameters including inactivation by hydrogen peroxide as well as the inhibitory rate constants by the amino acid inhibitor.Kinetic parameters of inactivation including the initial activity of MP-11, α0, the apparent inactivation rate constant, ki and the apparent inhibition rate constant for cysteine, kI were obtained 0.282 ± 0.006 min?1, 0.497 ± 0.013 min?1 and 1.374 ± 0.007 min?1 at [H2O2] = 1.0 mM, 27 °C, phosphate buffer 5.0 mM, pH 7.0. Results showed that inactivation and inhibition of microperoxidase as a peroxidase model enzyme occurred simultaneously even at low concentrations of hydrogen peroxide (0.4 mM). This kinetic analysis based on the suicide-substrate inactivation of microperoxidase-11, provides a tool and model for studying peroxidase models in the presence of reversible inhibitors. The introduced inhibition procedure can be used in designing activity tunable and specific protected enzyme models in the hidden and reversibly inhibited forms, which do not undergo inactivation.  相似文献   

17.
18.
The effect of 5-5′-dithiobis-2-nitrobenzoate (DTNB) on the kinetic parameters and structure of phosphoenolpyruvate carboxylase purified from maize (Zea mays L.) has been studied. The Vmax is found to be independent of the presence of this thiol reagent. The Km is increased upon oxidation of cysteines by DTNB. At a substrate concentration higher than Km (3.1 millimolar Mgphosphoenolpyruvate), a significant reversible decrease of the activity is observed. Malate has little effect in preventing the modification of these cysteines. The V type inhibition by malate was also studied at a saturating phosphoenolpyruvate level (9.3 millimolar Mgphosphoenolpyruvate). In the presence of 50 micromolar DTNB, up to 60% inhibition is caused by 15 millimolar malate; however, in the presence of both 50 micromolar DTNB and 50 millimolar dithiothreitol (DTT) this inhibition is reduced to 20%. The presence of DTT alone increases the size of the phosphoenolpyruvate carboxylase molecule as determined by light scattering. The activity at nonsaturating substrate concentration is increased by 36% in the presence of DTT. The oligomerization equilibrium between the dimer and the tetrameric form of the enzyme is affected by cysteine. The Km for the substrate, the sensitivity toward malate, and the size of the enzyme are found to be modified upon incubation in the presence of DTT.  相似文献   

19.
Active transport of thiamin (vitamin B1) into Escherichia coli occurs through a member of the superfamily of transporters known as ATP-binding cassette (ABC) transporters. Although it was demonstrated that the sulfhydryl-specific modifier N-ethylmaleimide (NEM) inhibited thiamin transport, the exact mechanism of this inhibition is unknown. Therefore, we have carried out a kinetic analysis of thiamin transport to determine the mechanism of inhibition by NEM. Thiamin transport in vivo exhibits Michaelis-Menten kinetics with KM=15 nM and Vmax=46 U mg−1. Treatment of intact E. coli KG33 with saturating NEM exhibited apparent noncompetitive inhibition, decreasing Vmax by approximately 50% without effecting KM or the apparent first-order rate constant (kobsd). Apparent noncompetitive inhibition is consistent with an irreversible covalent modification of a cysteine(s) that is critical for the transport process. A primary amino acid analysis of the subunits of the thiamin permease combined with our kinetic analysis suggests that inhibition of thiamin transport by NEM is different from other ABC transporters and occurs at the level of protein-protein interactions between the membrane-bound carrier protein and the ATPase subunit.  相似文献   

20.
The structure of the disaccharide cellulose subunit cellobiose (4-O-β-D-glucopyranosyl-D-glucose) in solution has been determined via neutron diffraction with isotopic substitution (NDIS), computer modeling and nuclear magnetic resonance (NMR) spectroscopic studies. This study shows direct evidence for an intramolecular hydrogen bond between the reducing ring HO3 hydroxyl group and the non-reducing ring oxygen (O5′) that has been previously predicted by computation and NMR analysis. Moreover, this work shows that hydrogen bonding to the non-reducing ring O5′ oxygen is shared between water and the HO3 hydroxyl group with an average of 50% occupancy by each hydrogen-bond donor. The glycosidic torsion angles φH and ψH from the neutron diffraction-based model show a fairly tight distribution of angles around approximately 22° and −40°, respectively, in solution, consistent with the NMR measurements. Similarly, the hydroxymethyl torsional angles for both reducing and non-reducing rings are broadly consistent with the NMR measurements in this study, as well as with those from previous measurements for cellobiose in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号