首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein which contains 2-aminoethylphosphonic acid (AEP) has been isolated from the ciliate protozoan Tetrahymena thermophila. The protein contains about 30% carbohydrate with both N- and O-glycosidic linkages to the polypeptide and 8% AEP which is attached only to the O-linked glycoside. The amino group of AEP is unreactive to dansyl chloride as is the amino terminus of the protein. The polypeptide portion of the molecule, Mr 22,500, contains 22% glycine, 5.5% hydroxyproline, and is quite acidic. The phosphoprotein is found in the cell membranes. Its synthesis is inhibited by tunicamycin to the same extent which the antibiotic inhibits cell division.  相似文献   

2.
The repeating disaccharide-dipeptide units of the bacterial, cell-wall peptidoglycan, one being O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)-(1→4)-2-acetamido-2-deoxy-d-glucose, and the other, O-(2-acetamido-2-deoxy-β-d-glucosyl)-(1→4)-N-acetyl-muramoyl-l-alanyl-d-isoglutamine, have been synthesized. Some carbohydrate analogs, such as O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)- (1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, O-β-d-glucosyl-(1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, and O-(6-acetamido-6-deoxy-β-d-glucosyl)-(1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, were also synthesized. Their immunoadjuvant activities were examined in guinea-pigs.  相似文献   

3.
Acetolysis, followed by quantitative de-O-acetylation with sodium methylate of the chloroform extract of the acetolyzates and chromatographic fractionation, was applied to the sialoglycopeptide α and asialoglycopeptide β obtained by pronase hydrolysis of ovomucoid. The acetolysis yielded small amounts of monosaccharides and a large proportion of oligosaccharides without transglycosylation. It does not split off the acetamido groups and, on the other hand, the sialosyl and the 2-acetamido-N-(L-aspart-4-oyl)-2-deoxy-β-D-glucopyranosylamine bonds are protected to a high degree. After de-O-acetylation, three fractions are obtained from the chloroform phase in the case of a sialoglycoprotide and two in the case of an asialoglycoprotide by chromatography on ion-exchange resins. The first fraction, not retained, contains neutral oligosaccharides from the median portion of the carbohydrate moieties. The second fraction, present only in the acetolyzates of the sialoglycopeptides and released from the anion-exchange resin, contains sialo-oligosaccharides from the outer part of the carbohydrate moieties. The last fraction, eluted from the cation-exchange resin, contains the glycopeptides and represents the carbohydrate components near the site of attachment to the peptide chain.  相似文献   

4.
A new method is described for the semisynthetic preparation of mixed-acid phosphatidylethanolamine (PE) having the natural steric configuration. Any phospholipid mixture from natural sources, e.g. soya phospholipids, can be used as the starting material. In the first step, PE is reacted with tritylbromide, and the resulting N-trityl-phosphatidylethanolamine is converted to N-trityl-glycerophosphoethanolamine (N-trityl-GPE) by alkaline hydrolysis. Reaction with tritylchloride yields 1-O,N-ditrityl-GPE, which is acylated in the 2-position with, e.g. acylimidazolides. The 1-O-protecting trityl group is then selectively removed in the presence of borontrifluoride-methanol, and the second acyl moiety is introduced by acylation with fatty acid anhydrides. After N-detritylation with trifluoroacetic acid, the final product is obtained in high yield and with less than 10% of the positional isomer. The main advantages of the new method are that it requires only a few reaction steps, that some of the intermediates need not be isolated, and that no enzymatic reaction is involved. Thus, the procedure described here can be applied to the synthesis of mixed-acid PEs on a technical scale.  相似文献   

5.
The isolation and partial characterization of a glycoprotein isolated from individual gastric aspirates and extracts of gastric mucosae solubilized with N-acetylcysteine is described.The isolated glycoproteins and the glycoproteins from proteolysed gastric aspirates showed virtually the same carbohydrate and amino acid composition. The results indicate that they consist of a protein core to which are attached carbohydrate side-chains composed of four sugars: N-acetylgalactosamine N-acetylglucosamine, galactose, fucose showing a ratio of 1 : 3 : 4 : 2. Superimposed on this basic structure were additional sugar residues, the blood-group determinants. The results also suggest that the carbohydrate side-chains are linked by an alkali-labile O-glycosidic linkage to the threonine and serine residues of the protein core, N-acetylgalactosamine forming the link.  相似文献   

6.
Five carbohydrate analogs of N-acetylmuramoyl-l-alanyl-d-isoglutamine have been synthesized from benzyl 2-acetamido-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-glucopyranoside (1) and the corresponding 6-O-benzoyl derivative (2). Chlorination of 1 and 2 with triphenylphosphine in carbon tetrachloride gave the 4,6-dichloro compound 3 and the 6-O-benzoyl-4-chloro compound (4), which were treated with tributyltin hydride, to yield benzyl 2-acetamido-2,4,6-trideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-xylo-hexopyranoside (6) and benzyl 2-acetamido-6-O-benzoyl-2,4-dideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-xylo-hexopyranoside (7), respectively. Methanesulfonylation of 8, derived from 7 by debenzoylation, gave the 6-methanesulfonate, which underwent displacement with azide ion to afford benzyl 2-acetamido-6-azido-2,4,6-trideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-α-d-xylo-hexopyranoside (10). Hydrolysis of the methyl ester group in compounds 3, 5 (debenzoylated 4), 6, 8, and 10 gave the corresponding free acids, which were coupled with l-alanyl-d-isoglutamine benzyl ester, to yield the dipeptide derivatives in excellent yields. Hydrogenation of the dipeptide derivatives thus obtained gave the five carbohydrate analogs of N-acetylmuramoyl-l-alanyl-d-isoglutamine, respectively, in good yields. The immunoadjuvant activity of the N-acetylmuramoyl-dipeptide analogs was examined.  相似文献   

7.
A simple procedure for the detection of endo-β-N-acetylglucosaminidase H activity is described. The method utilizes N-[14C]methylribonuclease B as substrate. This is prepared from ribonuclease B by reductive alkylation of free amine groups in the protein with [14C]formaldehyde. Because the carbohydrate moiety of ribonuclease B has α-mannosyl residues at nonreducing terminal positions, the radioactive molecule binds to Sepharose-concanavalin A. Endo-β-N-acetylglucosaminidase action releases this mannose-containing oligosaccharide by splitting the di-N-acetylchitobiosyl residue that links it with the peptide and thereby renders the radioactive portion of the molecule unreactive with Sepharose-concanavalin A. This forms the basis of a convenient assay for screening column fractions during the purification of the endoglycosidase. Although protease or α-mannosidase activity might also be detected by the procedure, no difficulties were presented by these enzymes when the assay was used for the preparation of endo-β-N-acetylglucosaminidase H from Streptomyces plicatus.  相似文献   

8.
Cleavage of the O-glycosyl bonds of Saccharomyces cerevisiae cell wall mannoproteins by β-elimination resulted in the release of about 8% of the carbohydrate in the form of mannose and other low molecular weight oligomannosaccharides (mannose to mannopentaose), leaving 92% mannose still covalently linked to the peptide, and suggesting that this alkali-resistant fraction was N-glycosidically linked. At the non-permissive temperature, S. cerevisiae sec mutants accumulated in the cytoplasm mannoproteins with different degrees of O- and N-glycosylation. The glycoproteins of mutant sec 20-1 contained 60% of the carbohydrate linked by N-bonds, the remainder being O-glycosidically linked. Strains sec 19-1 and sec 1-1 contained 80 and 87%, respectively, of the mannose as N-linked carbohydrates. In addition, when the non-permissive conditions were prolonged over 2 h, strain sec 20-1 completed the formation of the O-linked oligosaccharides, suggesting that it is the kinetics of the process that determines the final composition of the mannoproteins. Our results suggest that the glycosylation of yeast cell wall mannoproteins is probably initiated in the lumen of the endoplasmic reticulum where the O-linked oligosaccharides may be completed. Maturation of the N-linked oligosaccharides, on the other hand, probably occurs during transport of the nascent mannoproteins to the cell surface.  相似文献   

9.
2-Acetamido-2-deoxy-4- and -6-O-(d-2-propanoyl-l-alanyl-d-isoglutamine)-d-glucopyranose, 2-acetamido-2-deoxy-3-O-(d-2-propanoyl-l-alanyl-d-isoglutamine)-d-allopyranose, -d-gulopyranose, -d-galactopyranose, -d-mannopyranose, and -l-idopyranose, and 3-O-(d-2-propanoyl-l-alanyl-d-isoglutamine)-d- and -l-glucopyranose were synthesized, in order to clarify the structural requirements for the immunoadjuvant activity of the carbohydrate moiety in N-acetylmuramoyl-l-alanyl-d-isoglutamine. Immunoadjuvant activity of the N-acetylmuramoyl-dipeptide analogs was examined in guinea-pigs.  相似文献   

10.
A very sensitive method, using electron-capture gas chromatography, has been developed for the quantitative estimation of N-hydroxy-2-fluorenylacetamide, the proximal carcinogenic metabolite of N-2-fluorenylacetamide. After incubation of the carcinogenic parent arylamide with rat liver microsomes, the N-hydroxy derivative produced is converted into N-chloro-2-fluorenylamine by treatment with hydrochloric acid; the amine is extracted with cyclohexane and transformed into N-chloro-2-fluorenyltrifluoroacetamide with trifluoroacetic anhydride. As little as 0.06 ng of the latter compound can be readily detected by gas-liquid chromatography using an electron-capture detector.  相似文献   

11.
A quantitative micromethod has been described for monitoring the rate and extent of the β-elimination reaction as applied to O-glycosyl-glycoproteins utilizing alkaline tritiated borohydride. The procedure simultaneously labels the released oligosaccharides by their reduction to the corresponding tritiated alditols. The alkaline tritiated borohydride treatment also results in the labeling of the protein moiety of the glycoprotein and this can be quantitatively separated from the carbohydrate moiety on a cation exchange resin; the carbohydrate moiety is not adsorbed, while the protein moiety is adsorbed and then eluted with HCl. The radioactivity in the aqueous eluate of the resin is therefore a direct measure of the amount of oligosaccharides released by the β-elimination reaction. The sensitivity of the method is dependent on the specific activity of the tritiated sodium borohydride used. The stoichiometry of the reaction has been established by the use of N-acetylgalactosaminyl-O-glycoproteins, demonstrating that at the completion of the β-elimination reaction: (a) none of the radioactivity attributable to the protein moiety contaminates the carbohydrate moiety, (b) all the carbohydrate components of the glycoprotein are found in the aqueous eluate from the cationic exchange resin, (c) all the radioactivity in this aqueous eluate is associated with the sugar known to be at the reducing end of the oligosaccharide chain bound to serine or threonine of the glycoprotein (in the examples discussed, N-acetylgalactosamine), and (d) there is no additional hydrolysis of the oligosaccharide chains during the processing.  相似文献   

12.
UDP-N,N′-diacetylbacillosamine (UDP-diNAcBac) is a unique carbohydrate produced by a number of bacterial species and has been implicated in pathogenesis. The terminal step in the formation of this important bacterial sugar is catalyzed by an acetyl-CoA (AcCoA)-dependent acetyltransferase in both N- and O-linked protein glycosylation pathways. This bacterial acetyltransferase is a member of the left-handed β-helix family and forms a homotrimer as the functional unit. Whereas previous endeavors have focused on the Campylobacter jejuni acetyltransferase (PglD) from the N-linked glycosylation pathway, structural characterization of the homologous enzymes in the O-linked glycosylation pathways is lacking. Herein, we present the apo-crystal structures of the acetyltransferase domain (ATD) from the bifunctional enzyme PglB (Neisseria gonorrhoeae) and the full-length acetyltransferase WeeI (Acinetobacter baumannii). Additionally, a PglB-ATD structure was solved in complex with AcCoA. Surprisingly, this structure reveals a contrasting binding mechanism for this substrate when compared with the AcCoA-bound PglD structure. A comparison between these findings and the previously solved PglD crystal structures illustrates a dichotomy among N- and O-linked glycosylation pathway enzymes. Based upon these structures, key residues in the UDP-4-amino and AcCoA binding pockets were mutated to determine their effect on binding and catalysis in PglD, PglB-ATD, and WeeI. Last, a phylogenetic analysis of the aforementioned acetyltransferases was employed to illuminate the diversity among N- and O-linked glycosylation pathway enzymes.  相似文献   

13.
From muscle tissues of the marine snail (Turbo cornutus) aminoalkylphosphonyl cerebrosides, which had been shown to be present in visceral parts, were isolated.Their structure was determined by degradative methods and by characterization of components by gas chromatography-mass spectrometry.The aminoalkylphosphonyl cerebroside fraction consisted of a major portion of 1-O-[6′-O-(N-methylaminoethylphosphonyl)galactosyl] ceramide and a minor portion of a novel lipid, 1-O-[6′-O-(aminoethylphosphonyl)galactosyl] ceramide.The fatty acids of the fraction were mainly palmitic (53.3%) and 2-hydroxy palmitic acid (14.6%). The long chain bases were mainly dihydroxy C22 : 2 (36.6%), C18 : 1 (14.6%) and C18 : 2 (11.3%), and trihydroxy bases were also found as minor components.  相似文献   

14.
A universal approach to the synthesis of carbohydrate conjugates with polyhedral boron compounds (PBCs) was developed. Oligosaccharide derivatives with amino group in aglycone moiety can be conjugated with PBC carboxy derivatives using N-methyl-N-(4,6-dimethoxy-1,3,5-triazin-2-yl)morpholinium chloride as a condensing agent. Both N-and O-glycosides differing in the conformation mobility around the glycoside bond were shown to be useful as oligosaccharides with a functional group in the aglycone moiety. This allows the application of this approach to the synthesis of PBC conjugates with a wide range of oligosaccharides isolated from natural sources can be transformed into N-glycosides with a functional group in aglycone. The approach was tested by conjugation of the carboxy derivatives of ortho-carborane and dodecaborate anion with lactose as a model oligosaccharide. Lactose, an easily available disaccharide, is a ligand of lectins expressed on the surface of melanoma cells. The approach suggested is the first example of the synthesis of such conjugates that does not require protective groups for the carbohydrate residue. It is especially important for obtaining dodecaborate-carbohydrate conjugates for which the removal of protective groups is often a non-trivial task.  相似文献   

15.
Ficolins are oligomeric innate immune recognition proteins consisting of a collagen-like region and a fibrinogen-like recognition domain that bind to pathogen- and apoptotic cell-associated molecular patterns. To investigate their carbohydrate binding specificities, serum-derived L-ficolin and recombinant H- and M-ficolins were fluorescently labeled, and their carbohydrate binding ability was analyzed by glycan array screening. L-ficolin preferentially recognized disulfated N-acetyllactosamine and tri- and tetrasaccharides containing terminal galactose or N-acetylglucosamine. Binding was sensitive to the position and orientation of the bond between N-acetyllactosamine and the adjacent carbohydrate. No significant binding of H-ficolin to any of the 377 glycans probed could be detected, providing further evidence for its poor lectin activity. M-ficolin bound preferentially to 9-O-acetylated 2-6-linked sialic acid derivatives and to various glycans containing sialic acid engaged in a 2-3 linkage. To further investigate the structural basis of sialic acid recognition by M-ficolin, point mutants were produced in which three residues of the fibrinogen domain were replaced by their counterparts in L-ficolin. Mutations G221F and A256V inhibited binding to the 9-O-acetylated sialic acid derivatives, whereas Y271F abolished interaction with all sialic acid-containing glycans. The crystal structure of the Y271F mutant fibrinogen domain was solved, showing that the mutation does not alter the structure of the ligand binding pocket. These analyses reveal novel ficolin ligands such as sulfated N-acetyllactosamine (L-ficolin) and gangliosides (M-ficolin) and provide precise insights into the sialic acid binding specificity of M-ficolin, emphasizing the essential role of Tyr271 in this respect.  相似文献   

16.
Sulfate incorporation into carbohydrate of lutropin (LH) has been studied in sheep pituitary slices using H235SO4. Labeled ovine LH was purified to homogeneity by Sephadex G-100 and carboxymethyl-Sephadex chromatography from both the incubation medium and tissue extract. Autoradiography of the gel showed only two protein bands which comigrated with the α and β subunits of ovine LH in both the purified ovine LH and the immunoprecipitate obtained with LH-specific rabbit antiserum. Furthermore, [35S]sulfate was also incorporated into several other proteins in addition to LH. The location of 35SO42? in the oligosaccharides of ovine LH was evidenced by its presence in the glycopeptides obtained by exhaustive Pronase digestion. The location and the point of attachment of sulfate in the carbohydrate unit were established by the isolation of 4-O-[35S]sulfo-N-acetylhexosaminyl-glycerols and 4-O-[35S]sulfo-N-acetylglucosaminitol from the Smith degradation products and by the release of 35SO42? by chondro-4-sulfatase. Thus, the present line of experimentation indicates the presence of sulfate on both the terminal N-acetylglucosamine and N-acetylgalactosamine in the oligosaccharide chains of the labeled ovine LH.  相似文献   

17.
The Cuvierian tubules of Holothuria forskali Della Chiaje, a sea cucumber found in the Adriatic Sea, were investigated with regard to their carbohydrate moieties. From a Pronase digest of these tubules three types of carbohydrate units were isolated and characterized. 1. A high-molecular-weight glycopeptide fraction was shown to contain sulphated polyfucose, galactosamine, a uronic acid and a previously unknown neuraminic acid derivative. The sulphate was shown by i.r. analysis to be present as an O-ester. The carbohydrate unit was linked O-glycosidically to threonine and serine residues in the polypeptide chain. The hitherto unknown neuraminic acid derivative (Hf-neuraminic acid) was resistant to enzymic cleavage by neuraminidase, even after mild alkaline hydrolysis for the removal of O-acyl residues. However, the glycosidic linkage of this compound to the other part of the carbohydrate moiety was readily cleaved by mild acid hydrolysis. Its chromatographic properties distinguished Hf-neuraminic acid from other known neuraminic acid derivatives (N-acetyl-, NO-diacetyl-, NOO-triacetyl- and N-glycollyl-neuraminic acid). Further, this acidic sugar was shown to possess neuraminic acid as its basic structure. Thus, an as yet unknown substituent lends the distinct properties to Hf-neuraminic acid. 2. The carbohydrate composition of a second glycopeptide fraction consisting of a derivative of neuraminic acid, galactose, mannose and glucosamine was similar to that of the well-known carbohydrate groups of the globular glycoproteins. 3. The third fraction contained two glycopeptides containing the disaccharide, glucosylgalactose, which was shown to be linked to the hydroxyl group of hydroxylysine residues of a collagen-like protein. Approximately half of these residues were glycosylated. In addition to these glycopeptides, a small amount of a third glycopeptide that carried only a galactosyl residue was detected. The amino acid sequence of the two major compounds were found to be Gly-Ala-Hyl*-Gly-Ser and Gly-Pro-Hyl*-Gly-Asp, where Hyl* represents a glycosylated amino acid residue.  相似文献   

18.
Five new N-mono-/bis-substituted acetamide glycosides, N-{4-O-[3-O-(4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (1), N-methyl-N-{4-O-[3-O-(4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (2), N-methyl-N-{4-O-[3-O-(6-O-benzoyl-4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (3), N-methyl-N-{4-O-[3-O-(6-O-benzoyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (4), and N-methyl-N-{4-O-[3-O-(6-O-trans-cinnamoyl-4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (5), along with one known acetamide derivative, N-methyl-N-(4-hydroxyphenethyl)-acetamide, the shared aglycone of 25, were isolated from the ethanol extract of the stems of Ephedra sinica. The structures of these new compounds were elucidated on the basis of extensive spectroscopic examination, mainly including multiple 1D and 2D NMR and HRESIMS examinations, and qualitative chemical tests. All N,N-bissubstituted acetamide glycosides were found to show the obvious rotamerism, as in the case of the isolated known N-methyl-N-(4-hydroxyphenethyl)-acetamide, under the experimental NMR conditions, with the ratios of integrated intensities between anti- and syn-rotamers always being found to be about 4 to 3.  相似文献   

19.
《Insect Biochemistry》1991,21(3):249-258
Cuticle proteins are thought to be important in defining the structural and functional differences occurring in insect cuticle. In order to explain and better understand the structural similarities among the cuticle proteins of the cotton boll weevil, Anthonomus grandis Boheman, described in a previous study (Stiles and Leopold, 1990, Insect Biochem.20, 113–125) three series of monoclonal antibody producing hybridoma cell lines were produced. Larval, pupal or adult cuticle proteins were used as antigens. While some of the monoclonal antibodies were specific for one or two cuticle proteins from a single developmental stage, the majority showed multiple cuticle protein binding patterns on Western blots. To determine whether this cross-reaction was due to common oligosaccharide chains bound to the proteins, lectins were used to probe Western blots. Many of the cuticle proteins were found to be glycosylated. The majority of the Con A reactive carbohydrate could be removed from the protein by N-glycosidase F digestion (specific for N-asparagine linked carbohydrate). N-glycosidase F digestion did not reduce the multiple cross-reactions of the monoclonal antibodies, nor did periodate oxidation of the CP. The carbohydrate remaining after enzyme digestion is presumably O-linked to serine/threonine.  相似文献   

20.
Secretory proteins in yeast are N- and O-glycosylated while they enter the endoplasmic reticulum. N-glycosylation is initiated by the oligosaccharyl transferase complex and O-mannosylation is initiated by distinct O-mannosyltransferase complexes of the protein mannosyl transferase Pmt1/Pmt2 and Pmt4 families. Using covalently linked cell-wall protein 5 (Ccw5) as a model, we show that the Pmt4 and Pmt1/Pmt2 mannosyltransferases glycosylate different domains of the Ccw5 protein, thereby mannosylating several consecutive serine and threonine residues. In addition, it is shown that O-mannosylation by Pmt4 prevents N-glycosylation by blocking the hydroxy amino acid of the single N-glycosylation site present in Ccw5. These data prove that the O- and N-glycosylation machineries compete for Ccw5; therefore O-mannosylation by Pmt4 precedes N-glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号