首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The presence of disulfide bonds can be detected unambiguously only by X-ray crystallography, and otherwise must be inferred by chemical methods. In this study we demonstrate that 13C NMR chemical shifts are diagnostic of disulfide bond formation, and can discriminate between cysteine in the reduced (free) and oxidized (disulfide bonded) state. A database of cysteine 13C C and C chemical shifts was constructed from the BMRB and Sheffield databases, and published journals. Statistical analysis indicated that the C shift is extremely sensitive to the redox state, and can predict the disulfide-bonded state. Further, chemical shifts in both states occupy distinct clusters as a function of secondary structure in the C/C chemical shift map. On the basis of these results, we provide simple ground rules for predicting the redox state of cysteines; these rules could be used effectively in NMR structure determination, predicting new folds, and in protein folding studies.  相似文献   

2.
Summary We have examined the 13C and 13C chemical shifts of a number of proteins and found that their values at the N-terminal end of a helix provide a good predictor for the presence of a capping box. A capping box consists of a hydrogen-bonded cycle of four amino acids in which the side chain of the N-cap residue forms a hydrogen bond with the backbone amide of the N3 residue, whose side chain in turn may accept a hydrogen bond from the amide of the N-cap residue. The N-cap residue exhibits characteristic values for its backbone torsion angles, with and clustering around 94±15° and 167±5°, respectively. This is manifested by a 1–2 ppm upfield shift of the 13C resonance and a 1–4 ppm downfield shift of the 13C resonance, relative to their random coil values, and is mainly associated with the unusually large value of . The residues following the N-cap residue exhibit downfield shifts of 1–3 ppm for the 13C resonances and small upfield shifts for the 13C ones, typical of an -helix.  相似文献   

3.
13C NMR spectra of several carbon monoxide (99.7% 13C and 11.8% 18O enriched) hemoprotein models with varying polar and steric effects of the distal organic superstructure and constraints of the proximal side are reported. This enables the 57Fe-13C(O) coupling constants ( ), 13C shieldings ((13C)), and 18O isotope effects on13 C shieldings (113C(18O/16O)) to be measured and hence comparisons with hemoproteins, C-O vibrational frequencies and X-ray structural data to be made. Negative polar interactions in the binding pocket and inhibition of Fe//CO back-donation or positive distal polar interactions with amide NH groups appear to have little direct effect on couplings. Similarly, the axial hindered base 1,2-dimethylimidazole has a minor effect on the values despite higher rates of CO desorption being observed for such complexes. On the contrary,13 C shieldings vary widely and an excellent correlation was found between the infrared C-O vibrational frequencies ((C-O)) and13 C shieldings and a reasonable correlation with18 O isotope effects on 13C shieldings. This suggests that (13C), (C-O) and1 13 C(18O/16O) are accurate monitors of the multiple mechanisms by which steric and electronic interactions are released in superstructured heme model compounds. The 13C shieldings of heme models cover a 4.0 ppm range which is extended to 7.0 ppm when several HbCO and MbCO species at different pH values are included. The latter were found to obey a similar linear (13 (13C) versus (C-O) relationship, which proves that both heme models and heme proteins are homogeneous from the structural and electronic viewpoint. Our results suggest that (C-O), (13C) and 113C(18O/16O) measurements reflect similar interaction which is primarily the modulation of back-bonding from the Fe d to the CO * orbital by the distal pocket polar interactions. The lack of correlation between1 13 C(18O/16O) and crystallographic CO bond lengths (r(C-O)) reflects significant uncertainties in the X-ray determination of the carbon and oxygen positions.  相似文献   

4.
Summary The assignments of the 1H, 15N, 13CO and 13C resonances of recombinant human basic fibroblast growth factor (FGF-2), a protein comprising 154 residues and with a molecular mass of 17.2 kDa, is presented based on a series of three-dimensional triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N-/13C-labeled FGF-2 with an isotope incorporation >95% for the protein expressed in E. coli. The sequence-specific backbone assignments were based primarily on the interresidue correlation of C, C and H to the backbone amide 1H and 15N of the next residue in the CBCA(CO)NH and HBHA(CO)NH experiments and the intraresidue correlation of C, C and H to the backbone amide 1H and 15N in the CBCANH and HNHA experiments. In addition, C and C chemical shift assignments were used to determine amino acid types. Sequential assignments were verified from carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the HNCA experiment. Aliphatic side-chain spin systems were assigned primarily from H(CCO)NH and C(CO)NH experiments that correlate all the aliphatic 1H and 13C resonances of a given residue with the amide resonance of the next residue. Additional side-chain assignments were made from HCCH-COSY and HCCH-TOCSY experiments. The secondary structure of FGF-2 is based on NOE data involving the NH, H and H protons as well as 3JH n H coupling constants, amide exchange and 13C and 13C secondary chemical shifts. It is shown that FGF-2 consists of 11 well-defined antiparallel -sheets (residues 30–34, 39–44, 48–53, 62–67, 71–76, 81–85, 91–94, 103–108, 113–118, 123–125 and 148–152) and a helix-like structure (residues 131–136), which are connected primarily by tight turns. This structure differs from the refined X-ray crystal structures of FGF-2, where residues 131–136 were defined as -strand XI. The discovery of the helix-like region in the primary heparin-binding site (residues 128–138) instead of the -strand conformation described in the X-ray structures may have important implications in understanding the nature of heparin-FGF-2 interactions. In addition, two distinct conformations exist in solution for the N-terminal residues 9–28. This is consistent with the X-ray structures of FGF-2, where the first 17–19 residues were ill defined.  相似文献   

5.
Summary Dynamics of the backbone and some side chains of apo-neocarzinostatin, a 10.7 kDa carrier protein, have been studied from 13C relaxation rates R1, R2 and steady-state 13C-{1H} NOEs, measured at natural abundance. Relaxation data were obtained for 79 nonoverlapping C resonances and for 11 threonine C single resonances. Except for three C relaxation rates, all data were analysed from a simple two-parameter spectral density function using the model-free approach of Lipari and Szabo. The corresponding C–H fragments exhibit fast (e < 40 ps) restricted libration motions (S2=0.73 to 0.95). Global examination of the microdynamical parameters S2 and e along the amino acid sequence gives no immediate correlation with structural elements. However, different trends for the three loops involved in the binding site are revealed. The -ribbon comprising residues 37 to 47 is spatially restricted, with relatively large e values in its hairpin region. The other -ribbon (residues 72 to 87) and the large disordered loop ranging between residues 97–107 experience small-amplitude motions on a much faster (picosecond) time scale. The two N-terminal residues, Ala1 and Ala2, and the C-terminal residue Asn113, exhibit an additional slow motion on a subnanosecond time scale (400–500 ps). Similarly, the relaxation data for eight threonine side-chain C must be interpreted in terms of a three-parameter spectral density function. They exhibit slower motions, on the nanosecond time scale (500–3000 ps). Three threonine (Thr65, Thr68, Thr81) side chains do not display a slow component, but an exchange contribution to the observed transverse relaxation rate R2 could not be excluded at these sites. The microdynamical parameters (S2, e and R2ex) or (S infslow sup2 , S inffast sup2 and slow) were obtained from a straightforward solution of the equations describing the relaxation data. They were calculated assuming an overall isotropic rotational correlation time e for the protein of 5.7 ns, determined using standard procedures from R2/R1 ratios. However, it is shown that the product (1–S2e is nearly independent of e for residues not exhibiting slow motions on the nanosecond time scale. In addition, this parameter very closely follows the heteronuclear NOEs, which therefore could be good indices for local fast motions on the picosecond time scale.  相似文献   

6.
Summary Short oligocytidylates can act as templates for the self-condensation of guanosine 5-phosphorimidazolide. In the absence of a catalytic metal ion or in the presence of Pb2+ a noticeable template effect is already observed with the dimer and the yield of long oligomers reaches a plateau with a hexamer template. Short templates give oligomers longers than the template length. The products are predominantly 2-5 linked for the Pb2+-catalyzed reaction while mixed linkages are observed in the uncatalyzed reaction.In the presence of Zn2+, a template effect is first observed with the pentamer and is maximal by the heptamer. The products are predominantly 3-5 linked. Oligomers shorter than or as long as the template are obtained in substantial yield, and longer products in much lower yields.Abbreviations G Guanosine - Gp guanosine 2(3)-phosphate - pG guanosine 5-phosphate - Gp! guanosine cyclic 2,3-phosphate - ImpG guanosine 5-phosphorimidazolide - ImpG* [8-14C]-guanosine 5-phosphorimidazolide - pGp 5-phosphoguanosine 2(3)-phosphate - G2pG guanylyl-[2-5]-guanosine - G3pG guanylyl-[3-5]-guanosine - ImpGpG 5-phosphorimidazolide of GpG - (pG)n (n = 2,3) oligomers of pG - GppG P1, P2-diguanosine 5-diphosphate - GppGpG 5-[guanosine 5-pyrophosphate] of GpG - NH2pG guanosine 5-phosphoramidate - (pG)4+ tetramer and higher oligoguanylates with 5 terminal phosphate - oligo(G) oligoguanylate - Cp cytidine 2(3)-phosphate - Cp! cytidine cyclic 2,3-phosphate - (Cp)n–1 Cp! (n= 2,3,4) oligocytidylates terminated by 5-OH groups and 2,3-cyclic phosphates - oligo(C) oligocytidylate - poly(C) polycytidylic acid - poly(U) polyuridylic acid - poly(C,G) random copolymer of C and G - BAP bacterial alkaline phosphatase (E. coli) - EDTA ethylenediaminetetraacetic acid - Rf chromatographic mobility  相似文献   

7.
The study deals with a comparative analysis of the relative abundances of the carbon isotopes 12C and 13C in the metabolites and biomass of the Burkholderia sp. BS3702 and Pseudomonas putida BS202-p strains capable of utilizing aliphatic (n-hexadecane) and aromatic (naphthalene) hydrocarbons as sources of carbon and energy. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of Burkholderia sp. BS3702 on n-hexadecane (13C = –44.6 ± 0.2) were characterized by the values of 13CCO 2 = –50.2 ± 0.4, 13Cbiom = –46.6 ± 0.4, and 13Cexo = –41.5 ± 0.4, respectively. The isotope compositions of the carbon dioxide, biomass, and exometabolites produced during the growth of the same bacterial strain on naphthalene (13C = –21 ± 0.4) were characterized by the isotope effects 13CCO 2 = –24.1 ± 0.4, 13Cbiom = –19.2 ± 0.4, and 13Cexo = –19.1 ± 0.4, respectively. The possibility of using the isotope composition of metabolic carbon dioxide for the rapid monitoring of the microbial degradation of petroleum hydrocarbons in the environment is discussed.  相似文献   

8.
Mutants of Pseudomonas aeruginosa deficient in the utilization of l-proline as the only carbon and nitrogen source have been found to be defective either in proline dehydrogenase activity or in both proline dehydrogenase and 1-pyrroline-5-carboxylate dehydrogenase activities of the bifunctional proline degradative enzyme. The latter type of mutants was unable to utilize l-ornithine, indicating that a single 1-pyrroline-5-carboxylate dehydrogenase activity is involved in the degradation of ornithine and proline. Proline dehydrogenase and 1-pyrroline-5-carboxylate dehydrogenase activities were strongly and coordinately induced by proline. It was excluded that 1-pyrroline-5-carboxylate acted as an inducer of the bifunctional enzyme and it was shown that the low level induction observed during growth on ornithine was due to the intracellular formation of proline. The formation of the proline degradative enzyme was shown to be subject to catabolite repression by citrate and nitrogen control.Abbreviations EMS Ethylmethane sulfonate - NG N-methyl-N-nitro-N-nitrosoguanidine - P Minimal medium P - Pro-DH Proline dehydro-genase - P5C 1-Pyrroline-5-carboxylate - P5C-DH 1-Pyrroline-5-carboxylate dehydrogenase  相似文献   

9.
T. H. E. Heaton 《Oecologia》1987,74(2):236-246
Summary Data are presented for the 15N/14N ratios of 140 indigenous terrestrial plants from a wide variety of natural habitats in South Africa and Namibia. Over much of the area, from high-rainfall mountains to arid deserts, the 15N values of plants lie typically in the range -1 to +6; with no evident differences between C3 plants and C4 grasses. There is a slight correlation between 15N and aridity, but this is less marked than the correlation between the 15N values of animal bones and aridity. At coastal or saline sites, however, the mean 15N values for plants are higher than those at nearby inland or non-saline sites-e.g.: arid Namib coast (10 higher than inland Namib); wet Natal beach (5 higher than inland Natal); saline soils 500 km from coast (4 higher than non-saline soils). High values were also found at one site where there were no marked coastal or saline influences. These environmental effects on the isotopic composition of plants will extend upwards to the animals and humans they support. They therefore have important consequences for the use of nitrogen isotope data in the study of the dietary habits and trophic structures of modern and prehistoric communities.  相似文献   

10.
Summary The perdeuteration of aliphatic sites in large proteins has been shown to greatly facilitate the process of sequential backbone and side-chain 13C assignments and has also been utilized in obtaining long-range NOE distance restraints for structure calculations. To obtain the maximum information from a 4D 15N/15N-separated NOESY, as many main-chain and side-chain 1HN/15N resonances as possible must be assigned. Traditionally, only backbone amide 1HN/15N resonances are assigned by correlation experiments, whereas slowly exchanging side-chain amide, amino, and guanidino protons are assigned by NOEs to side-chain aliphatic protons. In a perdeuterated protein, however, there is a minimal number of such protons. We have therefore developed several gradient-enhanced and sensitivity-enhanced pulse sequences, containing water-flipback pulses, to provide through-bond correlations of the aliphatic side-chain 1HN/15N resonances to side-chain 13C resonances with high sensitivity: NH2-filtered 2D 1H-15N HSQC (H2N-HSQC), 3D H2N(CO)C/ and 3D H2N(COC/)C/ for glutamine and asparagine side-chain amide groups; 2D refocused H(N/)C/ and H(N/C/)C/ for arginine side-chain amino groups and non-refocused versions for lysine side-chain amino groups; and 2D refocused H(N)C and nonrefocused H(N.)C for arginine side-chain guanidino groups. These pulse sequences have been applied to perdeuterated 13C-/15N-labeled human carbonic anhydrase II (2H-HCA II). Because more than 95% of all side-chain 13C resonances in 2H-HCA II have already been assigned with the C(CC)(CO)NH experiment, the assignment of the side-chain 1HN/15N resonances has been straightforward using the pulse sequences mentioned above. The importance of assigning these side-chain HN protons has been demonstrated by recent studies in which the calculation of protein global folds was simulated using only 1HN-1HN NOE restraints. In these studies, the inclusion of NOE restraints to side-chain HN protons significantly improved the quality of the global fold that could be determined for a perdeuterated protein [R.A. Venters et al. (1995) J. Am. Chem. Soc., 117, 9592–9593].To whom correspondence should be addressed.  相似文献   

11.
Summary A 4D HCCH-TOCSY experiment is described for correlating and assigning the1H and13C resonances of protein amino acid side chains that has several advantages over 3D versions of the experiment. In many cases, both the1H and13C chemical shifts can be obtained in the 4D experiment from a simple inspection of the13C(3),1H(4) planes extracted at the1H(1)/13C(2) chemical shifts. Together with the 3D and 4D triple resonance experiments, this allows sequence-specific assignments to be obtained. In addition, the increased resolution of the 4D experiment compared to its 3D counterpart allows. automation of resonance assignments.  相似文献   

12.
Summary We present NMR studies of an intramolecular triple helix, the three strands of which have been linked by a hexaethylene glycol chain. To overcome the generally encountered difficulties of assignment in the homopyrimidine strands, the carbon C1 of the pyrimidines were selectively 13C-enriched. Assignments of the aromatic and sugar protons were obtained from NOESY-HMQC and TOCSY-HMQC spectra. We show that the recognition of a DNA duplex by a third strand via triplex formation is easily carried out in solution by observing the changes of the 1H1–13C1 connectivities as a function of pH. Furthermore, the conformation of the sugars has been found to be C2-endo, on the basis of the coupling constant values directly measured in an HSQC spectrum.  相似文献   

13.
Summary We present a comprehensive strategy for detailed characterization of the solution conformations of oligosaccharides by NMR spectroscopy and force-field calculations. Our experimental strategy generates a number of interglycosidic spatial constraints that is sufficiently large to allow us to determine glycosidic linkage conformations with a precision heretofore unachievable. In addition to the commonly used {1H,1H} NOE contacts between aliphatic protons, our constraints are: (a) homonuclear NOEs of hydroxyl protons in H2O to other protons in the oligosaccharide, (b) heteronuclear {1H,13C} NOEs, (c) isotope effects of O1H/O2H hydroxyl groups on13C chemical shifts, and (d) long-range heteronuclear scalar coupling across glycosidic bonds.We have used this approach to study the trisaccharide sialyl-(26)-lactose in aqueous solution. The experimentally determined geometrical constraints were compared to results obtained from force-field calculations based on Metropolis Monte Carlo simulations. The molecule was found to exist in 2 families of conformers. The preferred conformations of the (26)-linkage of the trisaccharide are best described by an equilibrium of 2 conformers with angles at –60° or 180° and of the 3 staggered rotamers of the angle with a predominantgt conformer. Three intramolecular hydrogen bonds, involving the hydroxyl protons on C8 and C7 of the sialic acid residue and on C3 of the reducing-end glucose residue, contribute significantly to the conformational stability of the trisaccharide in aqueous solution. Supplementary material available from the corresponding author: Table containing values for the dihedral angles , , , , and for bond angles , for the six lowest-energy conformations of sialyl-(26)-lactose (1 page).  相似文献   

14.
The chemical shift difference ([13C] – [13C]) is a reference-independent indicator of the Xaa-Pro peptide bond conformation. Based on a statistical analysis of the 13C chemical shifts of 1033 prolines from 304 proteins deposited in the BioMagRes database, a software tool was created to predict the probabilities for cis or trans conformations of Xaa-Pro peptide bonds. Using this approach, the conformation at a given Xaa-Pro bond can be identified in a simple NOE-independent way immediately after obtaining its NMR resonance assignments. This will allow subsequent structure calculations to be initiated using the correct polypeptide chain conformation.  相似文献   

15.
Summary NMR pulse sequences for measuring coupling constants in 13C, 15N-labeled proteins are presented. These pulse sequences represent improvements over earlier experiments with respect to resolution and number of radiofrequency pulses. The experiments are useful for measuring JNH , JNCO, JNC , JH N CO and JH N H . Applications to chymotrypsin inhibitor 2 (CI-2) are shown.  相似文献   

16.
Multiple-quantum 2D and 3D bi-directional HCNCH experiments are presented for the correlation of base and ribose protons/carbons in 13C/15N labeled HIV-1 TAR RNA. In both 2D and 3D experiments, the magnetization of H1 is transferred to H6/H8 and H1 through H1-C1-N1/9-C6/8-H6/8 and H1-C1-N1/9-C1-H1 pathways, and the magnetization of H6/8 is transferred to H1 and H6/8 through H6/8-C6/8-N1/9-C1-H1 and H6/8-C6/8-N1/9-C6/8-H6/8 pathways. Chemical shifts of four different nuclei (H1, C1, C6/8 and H6/8) are sampled in the 2D experiment. The correlation of base and ribose protons/carbons is established by the rectangular arrangement of crossover and out-and-back peaks in the proton/carbon correlated spectrum. The rectangular connections can be further resolved using the nitrogen dimension in a 1H/13C/15N 3D experiment. Furthermore, by taking advantage of the well separated chemical shifts of N1 (pyrimidine) and N9 (purine), the 2D spectrum can be simplified into two sub-spectra based on their base type. Both experiments were tested on a 13C/15N labeled 27-mer HIV-1 TAR RNA containing a UUCG hairpin loop.  相似文献   

17.
Summary [13C5]-2-Deoxy-d-ribose, synthesized from [13C6]-d-glucose (98% 13C), was coupled with thymine to give [1,2,3,4,5-13C5]-thymidine (T) in an 18% overall yield. The thymidine was converted to the 3-phosphoramidite derivative and was then incorporated into a dodecamer 5-d(CGCGAATTCGCG)-3 by solid-phase DNA synthesis. Preparation of 0.24 mole of the labeled dodecamer, which is sufficient for a single NMR sample, consumed only 25 mg of glucose. By virtue of the 13C labels, all of the 1H-1H vicinal coupling constants in the sugar moieties were accurately determined by HCCH-E.COSY.  相似文献   

18.
Rotational diffusion properties have been derived for the DNA dodecamer d(CGCGAATTCGCG)2 from 13C R1 and R1 measurements on the C1, C3, and C4 carbons in samples uniformly enriched in 13C. The narrow range of C-H bond vector orientations relative to the DNA axis make the analysis particularly sensitive to small structural deviations. As a result, the R1/R1 ratios are found to fit poorly to the crystal structures of this dodecamer, but well to a recent solution NMR structure, determined in liquid crystalline media, even though globally the structures are quite similar. A fit of the R1/R1 ratios to the solution structure is optimal for an axially symmetric rotational diffusion model, with a diffusion anisotropy, D||/D, of 2.1±0.4, and an overall rotational correlation time, (2D||+4D)–1, of 3.35 ns at 35 °C in D2O, in excellent agreement with values obtained from hydrodynamic modeling.  相似文献   

19.
Intra- and inter-tree variations in 13C/12C ratios were studied within a single clone plantation of 20-year-old Sitka spruce, some of which were treated with mist simulating acidic cloud water. For groups of trees of similar height and the same treatment, sampled at the same whorl height, 13C values for current year needles showed variations (1 SD) of between 0.2 and 0.7. The variations reflect the seasonally averaged influences, on intercellular CO2 concentrations, of slight variations in the microhabitat within a group. For a typical intra-group variation of 0.4 one may be able to distinguish between groups whose mean intercellular CO2 concentrations differ by only 8 ppm. Acid misting resulted in a lowering of 13C values by c. 0.7 (significant at the P0.05 level). This reflects higher intercellular CO2 concentrations for acid misted trees, which can be interpreted in terms of their having assimilation rates c. 10% lower than those of control trees, and might explain the observed reduction in stem growth for acid-misted trees. Without careful attention to sampling strategy, however, these small inter-tree 13C variations can be easily masked by the much larger intra-tree variations with height. Large gradients of increasing needle 13C with height, of c. 0.5 m-1, were observed in two untreated trees of different total height. The gradient was similar for both trees so, though 13C values of both trees were identical close to their leaders (–27), the taller tree displayed much lower values close to the ground (–31). The gradients are believed to reflect lower light levels close to the ground, rather than the accumulation of respired CO2 in the atmosphere. The different height response of stems versus needles, reflected by an increase in 13Cstems13Cneedles with height (for cellulose), is discussed in terms of stem photosynthetic recapture of internally respired CO2.  相似文献   

20.
The reversible conversion between D-mannose 6-phosphate and D-fructose 6-phosphate catalyzed by yeast phosphomannoisomerase was studied by phase sensitive 2D 13C-1H EXSY NMR spectroscopy at 100.623 MHz, using 13C enriched substrates in the C2 position of the D-hexose 6-phosphates. The unique pair of isomerization cross-peaks observed in the 2D EXSY map correlates the 13C2 resonances of the -anomers of both D-[2-13C]-mannose-6-phosphate and D-[213C]-fructose 6-phosphate. This indicates that phosphomannoisomerase specifically catalyzes the reversible conversion between -D-mannose 6-phosphate and -D-fructose 6-phosphate. Since phosphoglucoisomerase was recently found to catalyze specifically the interconversion of -D-glucose 6-phosphate and -D-fructose 6-phosphate, the -anomer of the ketohexose ester could be directly channeled in a multi-enzyme system involving phosphoglucoisomerase, phosphomannoisomerase and phosphofructokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号