首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin D and 1,25-dihydroxyvitamin D3 as modulators in the immune system   总被引:4,自引:0,他引:4  
Treatment from weaning until old age with 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)) prevents diabetes in NOD mice. It is mainly through its actions on dendritic cells (DCs), that 1,25(OH)(2)D(3) changes the function of potentially autoreactive T lymphocytes. In contrast, early life treatment (from 3 to 70 days of age) of NOD mice with vitamin D or 1,25(OH)(2)D(3) did not influence final diabetes incidence at 200 days of age. Also in spontaneous diabetic BB rats, diabetes could not be prevented by early life treatment (from 3 to 50 days of age) with vitamin D (1000 IU per day) or 1,25(OH)(2)D(3) (0.2 microg/kg per day or 1 microg/kg per 2 days). However, when NOD mice were made vitamin D deficient in early life (until 100 days of age), diabetes onset occurred earlier and final incidence was increased. These data further support a role for vitamin D and its metabolites in the pathogenesis of type 1 diabetes in NOD mice.  相似文献   

2.
Analogs of 1alpha,25-dihydroxyvitamin D3 as pluripotent immunomodulators   总被引:3,自引:0,他引:3  
The active form of vitamin D(3), 1,25(OH)(2)D(3), is known, besides its classical effects on calcium and bone, for its pronounced immunomodulatory effects that are exerted both on the antigen-presenting cell level as well as directly on the T lymphocyte level. In animal models, these immune effects of 1,25(OH)(2)D(3) are reflected by a strong potency to prevent onset and even recurrence of autoimmune diseases. A major limitation in using 1,25(OH)(2)D(3) in clinical immune therapy are the adverse side effects on calcium and on bone. TX527 (19-nor-14,20-bisepi-23-yne-1,25(OH)(2)D(3)) is a structural 1,25(OH)(2)D(3) analog showing reduced calcemic activity associated with enhanced in vitro and in vivo immunomodulating capacity compared to the mother-molecule. Indeed, in vitro TX527 is more potent that 1,25(OH)(2)D(3) in redirecting differentiation and maturation of dendritic cells and in inhibiting phytohemagglutinin-stimulated T lymphocyte proliferation. In vivo, this enhanced potency of TX527 is confirmed by a stronger potential to prevent type 1 diabetes in nonobese diabetic (NOD) mice and to prolong the survival of syngeneic islets grafts, both alone and in combination with cyclosporine A, in overtly diabetic NOD mice. Moreover, these in vivo effects of TX527 are obtained without the adverse side effects observed for 1,25(OH)(2)D(3) itself. We believe therefore that TX527 is a potentially interesting candidate to be considered for clinical intervention trails in autoimmune diseases.  相似文献   

3.
The immune effects of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) are mainly mediated through dendritic cells (DCs). In vitro, 1,25(OH)(2)D(3) treatment renders murine bone marrow (BM)-derived DCs more tolerogenic, indirectly altering behavior and fate of T lymphocytes. In vivo, treatment with 1,25(OH)(2)D(3) or its analogs prevents diabetes in NOD mice. The aim of this study was to investigate the effects of the 1,25(OH)(2)D(3)-analog TX527 on the expression of antigen-presenting and costimulatory/migratory molecules on BM-derived DCs from NOD mice. After culture with 20 ng/ml GM-CSF + 20 ng/ml IL-4 (8 days) followed by 1000 ng/ml LPS + 100 U/ml IFN-gamma (2 days), with or without 10(-8)M TX527, cells were counted and analyzed by FACS for MHC II, CD86, CD40 and CD54 expression within the CD11c(+) DC population. Upon TX527 treatment, cell recovery was significantly reduced whereas the CD11c(+) DC fraction remained constant. On CD11c(+) DCs, MHC II, CD86 and CD54 were significantly down-regulated and CD40 was twofold upregulated. Globally, BM-derived DCs from NOD mice become more tolerogenic upon TX527 treatment, confirming the effects of 1,25(OH)(2)D(3) on murine DCs and possibly explaining the protective effects of 1,25(OH)(2)D(3) and its analogs from diabetes in NOD mice.  相似文献   

4.
Vitamin D and autoimmune diabetes   总被引:16,自引:0,他引:16  
The biologically active form of vitamin D, 1,25(OH)(2)D(3), is a potent modulator of the immune system as well as a regulator of bone and mineral metabolism. Vitamin D-deficiency in infancy and vitamin D receptor gene polymorphisms may be risk factors for insulin-dependent Diabetes mellitus (IDDM). 1,25(OH)(2)D(3) and its analogs significantly repress the development of insulitis and diabetes in the non-obese diabetic (NOD) mouse, a model of human IDDM. 1,25(OH)(2)D(3) may modulate IDDM disease pathogenesis by repression of type I cytokines, inhibition of dendritic cell maturation, and upregulation of regulatory T cells. The function of vitamin D as a genetic and environmental determining factor for IDDM, the protective role of 1,25(OH)(2)D(3) and its analogs in a mouse model of IDDM, and the possible mechanisms by which this protection occurs will be reviewed.  相似文献   

5.
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D] has been shown to inhibit development of dextran sodium sulfate (DSS)-induced colitis in mice but can also cause hypercalcemia. The aim of this study was to evaluate whether β-glucuronides of vitamin D could deliver 1,25(OH)(2)D to the colon to ameliorate colitis while reducing the risk of hypercalcemia. Initial studies demonstrated that bacteria residing in the lower intestinal tract were capable of liberating 1,25(OH)(2)D from 1,25-dihydroxyvitamin D(3)-25-β-glucuronide [β-gluc-1,25(OH)(2)D]. We also determined that a much greater upregulation of the vitamin D-dependent 24-hydroxylase gene (Cyp24) was induced in the colon by treatment of mice with an oral dose of β-gluc-1,25(OH)(2)D than 1,25(OH)(2)D, demonstrating targeted delivery of 1,25(OH)(2)D to the colon. We then tested β-glucuronides of vitamin D in the mouse DSS colitis model in two studies. In mice receiving DSS dissolved in distilled water and treated with 1,25(OH)(2)D or β-gluc-1,25(OH)(2)D, severity of colitis was reduced. Combination of β-gluc-1,25(OH)(2)D with 25-hydroxyvitamin D(3)-25-β-glucuronide [β-gluc-25(OH)D] resulted in the greatest reduction of colitis lesions and symptoms in DSS-treated mice. Plasma calcium concentrations were lower in mice treated with β-gluc-1,25(OH)(2)D alone or in combination with β-gluc-25(OH)D than in mice treated with 1,25(OH)(2)D, which were hypercalcemic at the time of death. β-Glucuronides of vitamin D compounds can deliver 1,25(OH)(2)D to the lower intestine and can reduce symptoms and lesions of acute colitis in this model.  相似文献   

6.
1,25(OH)(2)D(3), the active form of vitamin D, is a central player in calcium and bone metabolism. More recently, important immunomodulatory effects have been attributed to this hormone. The widespread presence of the vitamin D receptor (VDR) in the immune system and the expression of the enzymes responsible for the synthesis of the active 1,25(OH)(2)D(3) regulated by specific immune signals, even suggest a paracrine immunomodulatory role for 1,25(OH)(2)D(3). Additionally, the different molecular mechanisms used by 1,25(OH)(2)D(3) to exert its immunomodulatory effects prove of a broad action radius for this compound. Both, the effects of vitamin D deficiency and/or absence of the VDR as well as intervention with pharmacological doses of 1,25(OH)(2)D(3) or one of its less-calcemic analogs, affects immune system behavior in different animal models of immune-mediated disorders, such as type 1 diabetes. This review aims to summarize the data as they stand at the present time on the role of vitamin D in the pathogenesis of immune-mediated disorders, with special focus on type 1 diabetes, and on the therapeutic opportunities for vitamin D in the prevention and treatment of this autoimmune disease in mouse models and humans.  相似文献   

7.
The in vivo regulation of circulating 1,25(OH)2D3 concentrations by vitamin D status and by dietary calcium and phosphate deficiency was studied. Adult rats were cannulated in the jugular vein and the clearance of physiological doses of 1,25(OH)2D3 monitored. In vitamin D-replete rats we investigated the effects of dietary calcium and phosphate deficiency on the elimination half life of 1,25(OH)2D3 The results showed no effect of dietary phosphate deficiency on the elimination half life of 1,25(OH)2D3. Dietary calcium deficiency resulted in a small increase of the 1,25(OH)2D3 elimination half life (P = 0.04) (normal diet: 16.3 +/- 1.8 hrs, n = 6; -Ca diet: 18.6 +/- 1.1 hrs, n = 5; -P diet: 16.0 +/- 1.4 hrs, n = 6; mean +/- SD). The experiments with the vitamin D deficient rats showed a marked increase in the elimination half life of 1,25(OH)2D3 (36.4 +/- 6.8 hrs, n = 7), when compared to the rats on the normal diet (P = 0.001). From the experiments in the vitamin D replete rats one can infer that regulation of circulating 1,25(OH)2D3 concentrations by dietary calcium or phosphate takes place at the production site and not by changes in elimination rate. However, vitamin D status appears to regulate circulating 1,25(OH)2D3 concentrations also through an effect on the elimination rate.  相似文献   

8.
The rapid, non-genomic actions of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] have been well described, however, the role of the nuclear vitamin D receptor (VDR) in this pathway remains unclear. To address this question, we used VDR(+/+) and VDR(-/-) osteoblasts isolated from wild-type and VDR null mice to study the increase in intracellular calcium ([Ca(2+)](i)) and activation of protein kinase C (PKC) induced by 1,25(OH)(2)D(3). Within 1 min of 1,25(OH)(2)D(3) (100 nM) treatment, an increase of 58 and 53 nM in [Ca(2+)](i) (n = 3) was detected in VDR(+/+) and VDR(-/-) cells, respectively. By 5 min, 1,25(OH)(2)D(3) caused a 2.1- and 1.9-fold increase (n = 6) in the phosphorylation of PKC substrate peptide acetylated-MBP(4-14) in VDR(+/+) and VDR(-/-) osteoblasts. The 1,25(OH)(2)D(3)-induced phosphorylation was abolished by GF109203X, a general PKC inhibitor, in both cell types, confirming that the secosteroid induced PKC activity. Moreover, 1,25(OH)(2)D(3) treatment resulted in the same degree of translocation of PKC-alpha and PKC-delta, but not of PKC-zeta, from cytosol to plasma membrane in both VDR(+/+) and VDR(-/-) cells. These experiments demonstrate that the 1,25(OH)(2)D(3)-induced rapid increases in [Ca(2+)](i) and PKC activity are neither mediated by, nor dependent upon, a functional nuclear VDR in mouse osteoblasts. Thus, VDR is not essential for these rapid actions of 1,25(OH)(2)D(3) in osteoblasts.  相似文献   

9.
Dendritic cells (DCs) not only induce but also modulate T cell activation. 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] induces DCs with a tolerogenic phenotype, characterized by decreased expression of CD40, CD80, and CD86 costimulatory molecules, low IL-12 and enhanced IL-10 secretion. We have found that a short treatment with 1,25(OH)(2)D(3) induces tolerance to fully mismatched mouse islet allografts that is stable to challenge with donor-type spleen cells and allows acceptance of donor-type vascularized heart grafts. This effect is enhanced by co-administration of mycophenolate mofetil (MMF), a selective inhibitor of T and B cell proliferation that has also effects similar to 1,25(OH)(2)D(3) on DCs. Graft acceptance is associated with an increased percentage of CD4(+)CD25(+) regulatory cells in the spleen and in the draining lymph node that can protect 100% of syngeneic recipients from islet allograft rejection. CD4(+)CD25(+) cells, able to inhibit the T cell response to a pancreatic autoantigen and to significantly delay disease transfer by pathogenic CD4(+)CD25(-) cells, are also induced by treatment of adult nonobese diabetic (NOD) mice with 1,25-dihydroxy-16,23Z-diene-26,27-hexafluoro-19-nor vitamin D(3) (BXL-698). This treatment arrests progression of insulitis and Th1 cell infiltration, and inhibits diabetes development at non-hypercalcemic doses. The enhancement of CD4(+)CD25(+) regulatory T cells, able to mediate transplantation tolerance and to arrest type 1 diabetes development by a short oral treatment with VDR ligands, suggests possible clinical applications of this approach.  相似文献   

10.
Calcium is required for many cellular processes including muscle contraction, nerve pulse transmission, stimulus secretion coupling and bone formation. The principal source of new calcium to meet these essential functions is from the diet. Intestinal absorption of calcium occurs by an active transcellular path and by a non-saturable paracellular path. The major factor influencing intestinal calcium absorption is vitamin D and more specifically the hormonally active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)). This article emphasizes studies that have provided new insight related to the mechanisms involved in the intestinal actions of 1,25(OH)(2)D(3). The following are discussed: recent studies, including those using knock out mice, that suggest that 1,25(OH)(2)D(3) mediated calcium absorption is more complex than the traditional transcellular model; evidence for 1,25(OH)(2)D(3) mediated active transport of calcium by distal as well as proximal segments of the intestine; 1,25(OH)(2)D(3) regulation of paracellular calcium transport and the role of 1,25(OH)(2)D(3) in protection against mucosal injury.  相似文献   

11.
Low vitamin D status is associated with an increased risk of Th1 mediated autoimmune diseases like inflammatory bowel disease. 1,25(OH)(2)D(3) treatments have been shown to suppress Th1 mediated immunity and protect animals from experimental autoimmunity. Th1 mediated immunity is important for clearance of a number of different infectious diseases. For tuberculosis 1,25(OH)(2)D(3) treatment is associated with decreased Th1 mediated immunity but increased bactericidal activity. Systemic candidiasis is unaffected by 1,25(OH)(2)D(3) treatment. The seemingly paradoxical effects of 1,25(OH)(2)D(3) and vitamin D on Th1 mediated autoimmunity versus infectious immunity point to a broad array of vitamin D targets in the immune system. The interplay of these vitamin D targets and their impact on the host-immune response then dictate the outcome.  相似文献   

12.
1,25(OH)(2)D(3) and 25(OH)D(3) have been associated with type 1 diabetes. Diverse enzymes are involved in the synthesis of these metabolites: the 25-Vitamin-D-hydroxylase (CYP2R1), the 25-hydroxyvitamin-D(3)-1-alpha-hydroxylase (CYP27B1) and the 25(OH)D(3)-24-hydroxylase (CYP24) among others. Serum levels of 25(OH)D(3) and 1,25(OH)(2)D(3) were investigated in type 1 diabetes patients (n=173) and the mRNA expression of the CYP2R1, CYP27B1 and CYP24 genes in type 1 diabetes patients (n=33) and healthy controls (n=23). These parameters were correlated with the -1260 (C/A) polymorphism in the CYP27B1 gene. Lower expression of CYP27B1 mRNA in comparison with healthy controls (1.7165 versus 1.7815, P=0.0268) was found. Additionally, patients carrying the genotype CC possessed a reduced amount of CYP27B1 mRNA compared to healthy controls (1.6855 versus 1.8107, respectively, P=0.0220). The heterozygosity rate of the -1260 C/A polymorphism was more frequent in patients with normal levels of 1,25(OH)(2)D(3) (> or =19.9 pmol/ml) than in whose with a level of less than 19.9 pmol/ml (46.7% versus 22.2%, P=0.0134). No correlation with serum levels of 25(OH)D(3) was found. Thus, CYP27B1 gene could play a functional role in the pathogenesis of type 1 diabetes through modulation of its mRNA expression and influence serum levels of 1,25(OH)(2)D(3) via the -1260 C/A polymorphism.  相似文献   

13.
Vitamin D binding protein (DBP) plays a key role in the bioavailability of active 1,25-dihydroxyvitamin D (1,25(OH)(2)D) and its precursor 25-hydroxyvitamin D (25OHD), but accurate analysis of DBP-bound and free 25OHD and 1,25(OH)(2)D is difficult. To address this, two new mathematical models were developed to estimate: 1) serum levels of free 25OHD/1,25(OH)(2)D based on DBP concentration and genotype; 2) the impact of DBP on the biological activity of 25OHD/1,25(OH)(2)D in vivo. The initial extracellular steady state (eSS) model predicted that 50 nM 25OHD and 100 pM 1,25(OH)(2)D), <0.1% 25OHD and <1.5% 1,25(OH)(2)D are 'free' in vivo. However, for any given concentration of total 25OHD, levels of free 25OHD are higher for low affinity versus high affinity forms of DBP. The eSS model was then combined with an intracellular (iSS) model that incorporated conversion of 25OHD to 1,25(OH)(2)D via the enzyme CYP27B1, as well as binding of 1,25(OH)(2)D to the vitamin D receptor (VDR). The iSS model was optimized to 25OHD/1,25(OH)(2)D-mediated in vitro dose-responsive induction of the vitamin D target gene cathelicidin (CAMP) in human monocytes. The iSS model was then used to predict vitamin D activity in vivo (100% serum). The predicted induction of CAMP in vivo was minimal at basal settings but increased with enhanced expression of VDR (5-fold) and CYP27B1 (10-fold). Consistent with the eSS model, the iSS model predicted stronger responses to 25OHD for low affinity forms of DBP. Finally, the iSS model was used to compare the efficiency of endogenously synthesized versus exogenously added 1,25(OH)(2)D. Data strongly support the endogenous model as the most viable mode for CAMP induction by vitamin D in vivo. These novel mathematical models underline the importance of DBP as a determinant of vitamin D 'status' in vivo, with future implications for clinical studies of vitamin D status and supplementation.  相似文献   

14.
Although osteocalcin is the most abundant noncollagenous protein in bone, its role remains undefined. Recent studies have reported diametrically opposing responses in the vitamin D regulation of the mouse vs the human and rat osteocalcin genes. The aim of this study was to increase the understanding of these differences and further elucidate the physiological function and regulation of osteocalcin. Direct comparison of the regulation of both the endogenous mouse osteocalcin gene (mOC) and a human osteocalcin promoter-chloramphenicol acetyl transferase (hOC-CAT) reporter as integrated templates was undertaken in primary osteoblastic cultures from OSCAT transgenic mice. Expression of both genes was up-regulated with the onset of mineralization. Long-term chronic 1, 25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) treatment and acute (2 day) PTH treatment inhibited both mOC and hOC-CAT expression. At all stages of osteoblastic development studied, hOC-CAT was up-regulated by acute 1,25-(OH)(2)D(3), whereas mOC was unaffected or inhibited. Mouse osteopontin was strongly up-regulated by acute 1, 25-(OH)(2)D(3) treatment. Thus, the divergence of the osteocalcin responses to 1,25-(OH)(2)D(3) is specific for the osteocalcin gene and for an acute 1,25-(OH)(2)D(3) treatment regime. Elucidation of this unique aspect of bone physiology will provide valuable insights into the still incompletely understood roles of osteocalcin and 1, 25-(OH)(2)D(3) in bone.  相似文献   

15.
The immunomodulatory effects of vitamin D have been described following chronic oral administration to mice or supplementation of cell cultures with 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the active form of vitamin D. In this study, topically applied 1,25(OH)(2)D(3), enhanced the suppressive capacity of CD4(+)CD25(+) cells from the draining lymph nodes. The effects of topical 1,25(OH)(2)D(3) were compared with those of UVB irradiation, which is the environmental factor required for 1,25(OH)(2)D(3) production in skin. CD4(+) cells from the skin-draining lymph nodes (SDLN) of either 1,25(OH)(2)D(3)-treated or UVB-irradiated mice had reduced capacity to proliferate to Ags presented in vitro, and could suppress Ag-specific immune responses upon adoptive transfer into naive mice. This regulation was lost upon removal of CD4(+)CD25(+) cells. Furthermore, purified CD4(+)CD25(+) cells from the SDLN of 1,25(OH)(2)D(3)-treated or UVB-irradiated mice compared with equal numbers of CD4(+)CD25(+) cells from control mice had increased capacity to suppress immune responses in both in vitro and in vivo assay systems. Following the sensitization of recipient mice with OVA, the proportion of CD4(+)Foxp3(+) cells of donor origin significantly increased in recipients of CD4(+)CD25(+) cells from the SDLN of 1,25(OH)(2)D(3)-treated mice, indicating that these regulatory T cells can expand in vivo with antigenic stimulation. These studies suggest that 1,25(OH)(2)D(3) may be an important mediator by which UVB-irradiation exerts some of its immunomodulatory effects.  相似文献   

16.
Multiple sclerosis (MS) results from an aberrant, neuroantigen-specific, T cell-mediated autoimmune response. Because MS prevalence and severity decrease sharply with increasing sunlight exposure, and sunlight supports vitamin D(3) synthesis, we proposed that vitamin D(3) and 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) may protect against MS. In support of this hypothesis, 1,25-(OH)(2)D(3) strongly inhibited experimental autoimmune encephalomyelitis (EAE). This inhibition required lymphocytes other than the encephalitogenic T cells. In this study, we tested the hypothesis that 1,25-(OH)(2)D(3) might inhibit EAE through the action of IL-10-producing regulatory lymphocytes. We report that vitamin D(3) and 1,25-(OH)(2)D(3) strongly inhibited myelin oligodendrocyte peptide (MOG(35-55))-induced EAE in C57BL/6 mice, but completely failed to inhibit EAE in mice with a disrupted IL-10 or IL-10R gene. Thus, a functional IL-10-IL-10R pathway was essential for 1,25-(OH)(2)D(3) to inhibit EAE. The 1,25-(OH)(2)D(3) also failed to inhibit EAE in reciprocal, mixed bone marrow chimeras constructed by transferring IL-10-deficient bone marrow into irradiated wild-type mice and vice versa. Thus, 1,25-(OH)(2)D(3) may be enhancing an anti-inflammatory loop involving hemopoietic cell-produced IL-10 acting on brain parenchymal cells and vice versa. If this interpretation is correct, and humans have a similar bidirectional IL-10-dependent loop, then an IL-10-IL-10R pathway defect could abrogate the anti-inflammatory and neuro-protective functions of sunlight and vitamin D(3). In this way, a genetic IL-10-IL-10R pathway defect could interact with an environmental risk factor, vitamin D(3) insufficiency, to increase MS risk and severity.  相似文献   

17.
Nephrin plays a key role in maintaining the structure of the slit diaphragm in the glomerular filtration barrier. Our previous studies have demonstrated potent renoprotective activity for 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)). Here we showed that in podocytes 1,25(OH)(2)D(3) markedly stimulated nephrin mRNA and protein expression. ChIP scan of the 6-kb 5' upstream region of the mouse nephrin gene identified several putative vitamin D response elements (VDREs), and EMSA confirmed that the VDRE at -312 (a DR4-type VDRE) could be bound by vitamin D receptor (VDR)/retinoid X receptor. Luciferase reporter assays of the proximal nephrin promoter fragment (-427 to +173) showed strong induction of luciferase activity upon 1,25(OH)(2)D(3) treatment, and the induction was abolished by mutations within -312VDRE. ChIP assays showed that, upon 1,25(OH)(2)D(3) activation, VDR bound to this VDRE leading to recruitment of DRIP205 and RNA polymerase II and histone 4 acetylation. Treatment of mice with a vitamin D analog induced nephrin mRNA and protein in the kidney, accompanied by increased VDR binding to the -312VDRE and histone 4 acetylation. 1,25(OH)(2)D(3) reversed high glucose-induced nephrin reduction in podocytes, and vitamin D analogs prevented nephrin decline in both type 1 and 2 diabetic mice. Together these data demonstrate that 1,25(OH)(2)D(3) stimulates nephrin expression in podocytes by acting on a VDRE in the proximal nephrin promoter. Nephrin up-regulation likely accounts for part of the renoprotective activity of vitamin D.  相似文献   

18.
The active metabolite of vitamin D (1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))) is known to modulate the immune response in Th1 cell-directed diseases. To investigate the role of vitamin D in Th2 cell-directed diseases, experimental allergic asthma was induced in vitamin D receptor (VDR) knockout and in wild-type (WT) mice. As expected, WT mice developed symptoms of airway inflammation with an influx of eosinophils, elevated Th2 cytokine levels, mucous production, and airway hyperresponsiveness. The administration of 1,25(OH)(2)D(3) had no effect on asthma severity. The only discernable effect of 1,25(OH)(2)D(3) on experimental allergic asthma in WT mice was an increased expression of two Th2-related genes (soluble CD23 and GATA-3) in lungs of BALB/c mice exposed to Ag through the nasal route only. By contrast, asthma-induced VDR knockout mice failed to develop airway inflammation, eosinophilia, or airway hyperresponsiveness, despite high IgE concentrations and elevated Th2 cytokines. The data suggest that although 1,25(OH)(2)D(3) induced these Th2-type genes, the treatment failed to have any affect on experimental asthma severity. However, VDR-deficient mice failed to develop experimental allergic asthma, suggesting an important role for the vitamin D endocrine system in the generation of Th2-driven inflammation in the lung.  相似文献   

19.
20.
Nemere I  Campbell K 《Steroids》2000,65(8):451-457
The effect of vitamin D status on levels of the putative 1, 25(OH)(2)D(3) membrane receptor (pmVDR) was studied in chick intestine, kidney, and brain. Western analyses and assays for specific [(3)H]1,25(OH)(2)D(3) binding indicated that, in intestine, pmVDR levels were greatest in -D chicks relative to +1,25D and +D animals (P < 0.05). In kidney, protein levels and specific binding followed the order +D > +1,25D, -D. In brain, vitamin D status did not affect protein levels or specific binding levels. In tissue from normal chicks, both protein and specific binding followed the order of intestine > kidney > brain membranes. Intestinal cells were further evaluated for the effect of 1,25(OH)(2)D(3) on selected "rapid responses." Extrusion of (45)Ca in response to 130 pM 1, 25(OH)(2)D(3) in vitro was greater in cells from -D chicks than from +1,25D or normal birds. Analyses of signal transduction events revealed diminished hormone-induced intracellular calcium oscillations (as assessed by fura-2 fluorescence), and lack of steroid-enhanced protein kinase (PK) A activity in intestinal epithelial cells from -D chicks relative to +D chicks. PK C activation by 130 pM 1,25(OH)(2)D(3) was approximately twofold in cells from +D or -D chicks. The combined results indicate that vitamin D status differentially affects the pmVDR in intestine, kidney, and brain. In intestine, vitamin D deficiency differentially affects (45)Ca handling, intracellular calcium oscillations, PK A and PK C activities in response to 1,25(OH)(2)D(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号