首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coordination of chromatin remodeling with chromatin modification is a central topic in gene regulation. The yeast chromatin remodeling complex RSC bears multiple bromodomains, motifs for acetyl-lysine and histone tail interaction. Here, we identify and characterize Rsc4 and show that it bears tandem essential bromodomains. Conditional rsc4 bromodomain mutations were isolated, and were lethal in combination with gcn5Delta, whereas combinations with esa1 grew well. Replacements involving Lys14 of histone H3 (the main target of Gcn5), but not other H3 or H4 lysine residues, also conferred severe growth defects to rsc4 mutant strains. Importantly, wild-type Rsc4 bound an H3 tail peptide acetylated at Lys14, whereas a bromodomain mutant derivative did not. Loss of particular histone deacetylases suppressed rsc4 bromodomain mutations, suggesting that Rsc4 promotes gene activation. Furthermore, rsc4 mutants displayed defects in the activation of genes involved in nicotinic acid biosynthesis, cell wall integrity, and other pathways. Taken together, Rsc4 bears essential tandem bromodomains that rely on H3 Lys14 acetylation to assist RSC complex for gene activation.  相似文献   

2.
Rsc4p, a subunit of the RSC chromatin-remodeling complex, is acetylated at lysine 25 by Gcn5p, a well-characterized histone acetyltransferase (HAT). Mutation of lysine 25 does not result in a significant growth defect, and therefore whether this modification is important for the function of the essential RSC complex was unknown. In a search to uncover the molecular basis for the lethality resulting from loss of multiple histone H3-specific HATs, we determined that loss of Rsc4p acetylation is lethal in strains lacking histone H3 acetylation. Phenotype comparison of mutants with arginine and glutamine substitutions of acetylatable lysines within the histone H3 tail suggests that it is a failure to neutralize the charge of the H3 tail that is lethal in strains lacking Rsc4p acetylation. We also demonstrate that Rsc4p acetylation does not require any of the known Gcn5p-dependent HAT complexes and thus represents a truly novel function for Gcn5p. These results demonstrate for the first time the vital and yet redundant functions of histone H3 and Rsc4p acetylation in maintaining cell viability.  相似文献   

3.
Whereas the histone acetyltransferase activity of yeast Gcn5p has been widely studied, its structural interactions with the histones and the role of the carboxy-terminal bromodomain are still unclear. Using a glutathione S-transferase pull down assay we show that Gcn5p binds the amino-terminal tails of histones H3 and H4, but not H2A and H2B. The deletion of bromodomain abolishes this interaction and bromodomain alone is able to interact with the H3 and H4 N termini. The amino acid residues of the H4 N terminus involved in the binding with Gcn5p have been studied by site-directed mutagenesis. The substitution of amino acid residues R19 or R23 of the H4 N terminus with a glutamine (Q) abolishes the interaction with Gcn5p and the bromodomain. These residues differ from those known to be acetylated or to be involved in binding the SIR proteins. This evidence and the known dispensability of the bromodomain for Gcn5p acetyltransferase activity suggest a new structural role for the highly evolutionary conserved bromodomain.  相似文献   

4.
5.
Histone lysine acetylation has emerged as a key regulator of genome organization. However, with a few exceptions, the contribution of each acetylated lysine to cellular functions is not well understood because of the limited specificity of most histone acetyltransferases and histone deacetylases. Here we show that the Mst2 complex in Schizosaccharomyces pombe is a highly specific H3 lysine 14 (H3K14) acetyltransferase that functions together with Gcn5 to regulate global levels of H3K14 acetylation (H3K14ac). By analyzing the effect of H3K14ac loss through both enzymatic inactivation and histone mutations, we found that H3K14ac is critical for DNA damage checkpoint activation by directly regulating the compaction of chromatin and by recruiting chromatin remodeling protein complex RSC.  相似文献   

6.
Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ HAT complex and contains a unique combination of domains typically found in chromatin-associated factors, which include plant homeodomain (PHD) fingers, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. Bromodomains are conserved structural motifs generally known to recognize acetylated histones, and the BRPF1 bromodomain preferentially selects for H2AK5ac, H4K12ac and H3K14ac. We solved the X-ray crystal structures of the BRPF1 bromodomain in complex with the H2AK5ac and H4K12ac histone peptides. Site-directed mutagenesis on residues in the BRPF1 bromodomain-binding pocket was carried out to investigate the contribution of specific amino acids on ligand binding. Our results provide critical insights into the molecular mechanism of ligand binding by the BRPF1 bromodomain, and reveal that ordered water molecules are an essential component driving ligand recognition.  相似文献   

7.
8.
9.
Although recent studies highlight the importance of histone modifications and ATP‐dependent chromatin remodelling in DNA double‐strand break (DSB) repair, how these mechanisms cooperate has remained largely unexplored. Here, we show that the SWI/SNF chromatin remodelling complex, earlier known to facilitate the phosphorylation of histone H2AX at Ser‐139 (S139ph) after DNA damage, binds to γ‐H2AX (the phosphorylated form of H2AX)‐containing nucleosomes in S139ph‐dependent manner. Unexpectedly, BRG1, the catalytic subunit of SWI/SNF, binds to γ‐H2AX nucleosomes by interacting with acetylated H3, not with S139ph itself, through its bromodomain. Blocking the BRG1 interaction with γ‐H2AX nucleosomes either by deletion or overexpression of the BRG1 bromodomain leads to defect of S139ph and DSB repair. H3 acetylation is required for the binding of BRG1 to γ‐H2AX nucleosomes. S139ph stimulates the H3 acetylation on γ‐H2AX nucleosomes, and the histone acetyltransferase Gcn5 is responsible for this novel crosstalk. The H3 acetylation on γ‐H2AX nucleosomes is induced by DNA damage. These results collectively suggest that SWI/SNF, γ‐H2AX and H3 acetylation cooperatively act in a feedback activation loop to facilitate DSB repair.  相似文献   

10.
11.
12.
The bromodomain is an approximately 110 amino acid module found in histone acetyltransferases and the ATPase component of certain nucleosome remodelling complexes. We report the crystal structure at 1.9 A resolution of the Saccharomyces cerevisiae Gcn5p bromodomain complexed with a peptide corresponding to residues 15-29 of histone H4 acetylated at the zeta-N of lysine 16. We show that this bromodomain preferentially binds to peptides containing an N:-acetyl lysine residue. Only residues 16-19 of the acetylated peptide interact with the bromodomain. The primary interaction is the N:-acetyl lysine binding in a cleft with the specificity provided by the interaction of the amide nitrogen of a conserved asparagine with the oxygen of the acetyl carbonyl group. A network of water-mediated H-bonds with protein main chain carbonyl groups at the base of the cleft contributes to the binding. Additional side chain binding occurs on a shallow depression that is hydrophobic at one end and can accommodate charge interactions at the other. These findings suggest that the Gcn5p bromodomain may discriminate between different acetylated lysine residues depending on the context in which they are displayed.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Biological experiments were combined with molecular dynamics simulations to understand the importance of amino acidic residues present in the bromodomain of the yeast histone acetyltransferase Gcn5p. It was found that residue Pro371 plays an important role in the molecular recognition of the acetylated histone H4 tail by Gcn5p bromodomain. Crystallographic analysis of the complex showed that this residue does not directly interact with the histone substrate. It has been demonstrated that a double mutation Pro371Thr and Met372Ala in the Gcn5p bromodomain impairs chromatin remodeling activity. It is demonstrated here that, in this double mutant and in the fully deleted bromodomain strain, there is lower growth under amino acid deprivation conditions. By in vitro surface plasmon resonance (Biacore) experiments it is shown that the binding affinity of the double mutation to acetyl lysine 16 histone H4 peptide decreases. Molecular dynamics simulations were used to explain this loss in acetyl lysine-Gcn5p bromodomain affinity, in the double mutant. By comparing nanosecond molecular dynamics trajectories of the native as well as the single and doubly mutated bromodomain, it is concluded that the presence of Pro371 is important to the functionality of the Gcn5p bromodomain. In the simulation a point mutation involving this highly conserved residue induced an increase in the flexibility of the ZA loop, which in turn modulated the exposure of the binding pocket to the acetyl lysine. The combined double mutations (Pro371Thr-Met372Ala) not only markedly perturb the motion of the ZA loop but also destabilize the entire structure of the bromodomain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号