首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Deregulated c-Myc expression leads to a cellular state where proliferation and apoptosis are equally favored depending on the cellular microenvironment. Since the apoptotic sensitivity of many cells is influenced by the status of the p53 tumor suppressor gene, we investigated whether the induction of apoptosis by DNA damage or non-genotoxic stress are also influenced by the p53 status of cells with altered c-Myc activity. Rat-1 fibroblasts expressing a conditional c-Myc allele (c-MycER), were transfected to express an antisense RNA complimentary to p53 mRNA. Expression of antisense p53 RNA decreased p53 protein levels and delayed p53 accumulation following c-Myc activation. Under hypoxic or low serum conditions, cells expressing antisense p53 were substantially more resistant to c-Myc-induced apoptosis than were control cells. c-Myc activation also sensitized Rat-1 cells to radiation-induced apoptosis. Rat-1 cells expressing antisense p53 RNA were more resistant to apoptosis induced by the combined effects of c-Myc activation and gamma irradiation. In a similar manner, apoptosis induced by c-Myc in serum starved, hypoxic or gamma irradiated fibroblasts was also inhibited by Bcl-2. These data indicate that p53 is involved in c-Myc-mediated apoptosis under a variety of stresses which may influence tumor growth, evolution and response to therapy.  相似文献   

3.
为了探讨增强p53、p21基因表达水平和降低c-myc基因表达水平对乳腺癌细胞MCF-7增殖的协同抑制作用,以及这些基因对细胞产生效应时的相互关系,本研究中首先构建了正义的p53、p21和反义的c-myc3种真核细胞表达载体,并根据析因实验设计三种载体不同剂量组合。按照组合用质粒转染细胞,然后对转染细胞的增殖抑制率进行检测,并采用金正均Q值法、单因素方差分析中的LSD法、聚类分析法等统计学方法对结果进行统计分析。结果显示,不同量的p53、p21反义c-myc对MCF-7细胞的增殖均有抑制作用,抑制的程度各基因间存在差异。在各基因组合中,p21与反义c-myc,p53与反义c-myc联用具有协同作用,对MCF-7细胞的增殖产生更强的抑制,而p53与p21之间未显示出协同作用。对三基因协同结果进行聚类分析后,发现第一类组合协同作用最明显,第九类组合的抑制率最高。由此推测,作为抑癌基因的p53或CDK抑制基因p21高表达,同时原癌基因c-myc表达受到抑制,可相互协同显著增强对MCF-7细胞增殖的抑制作用。  相似文献   

4.
为了探讨增强p53、p21基因表达水平和降低c—myc基因表达水平对乳腺癌细胞MCF-7.增殖的协同抑制作用,以及这些基因对细胞产生效应时的相互关系,本研究中首先构建了正义的p53、p21和反义的c—myc 3种真核细胞表达载体,并根据析因实验设计三种载体不同剂量组合。按照组合用质粒转染细胞,然后对转染细胞的增殖抑制率进行检测,并采用金正均Q值法、单因素方差分析中的LSD法、聚类分析法等统计学方法对结果进行统计分析。结果显示,不同量的p53、p21反义c—myc对MCF-7细胞的增殖均有抑制作用,抑制的程度各基因间存在差异。在各基因组合中,p21与反义c—myc,p53与反义c—myc联用具有协同作用,对MCF-7细胞的增殖产生更强的抑制,而p53与p21之间未显示出协同作用。对三基因协同结果进行聚类分析后,发现第一类组合协同作用最明显,第九类组合的抑制率最高。由此推测,作为抑癌基因的p53或CDK抑制基因p21高表达,同时原癌基因c—myc表达受到抑制,可相互协同显著增强对MCF-7细胞增殖的抑制作用。  相似文献   

5.
6.
Transcriptional activation of p53 by Pitx1   总被引:1,自引:0,他引:1  
  相似文献   

7.
Engagement of the B cell receptor of WEHI 231 immature B cells leads sequentially to a drop in c-Myc, to induction of the cyclin-dependent kinase inhibitor p27Kip1, and finally to apoptosis. Recently we demonstrated that the drop in c-Myc expression promotes cell death, whereas the induction of p27 has been shown to lead to growth arrest. In this paper, we demonstrate that increased p27 expression also promotes apoptosis of WEHI 231 B cells. The rescue of WEHI 231 cells by CD40 ligand engagement of its receptor prevented the increase in p27 induction. Inhibition of p27-ablated apoptosis induced upon expression of antisense c-myc RNA. Furthermore, specific induction of p27 gene expression resulted in apoptosis of WEHI 231 cells. Lastly, inhibition of expression of c-Myc, upon induction of an antisense c-myc RNA vector, was sufficient to induce increased p27 levels and apoptosis. Thus, these findings define a signaling pathway during B cell receptor engagement in which the drop in c-Myc levels leads to an increase in p27 levels that promotes apoptosis.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
The involvement of p53 and p21 signal pathway in the G2/M cell cycle progression of zinc-supplemented normal human bronchial epithelial (NHBE) cells was examined using the small interferring RNA (siRNA) approach. Cells were cultured for one passage in a different concentration of zinc: <0.4 microM (ZD) as zinc deficient; 4 microM as normal zinc level (ZN) in culture medium; 16 microM (ZA) as normal human plasma zinc level; and 32 microM (ZS) as the high end of plasma zinc attainable by oral supplementation. Nuclear p21 protein and mRNA levels as well as promoter activity in ZS cells, but not in ZD cells, were markedly elevated to almost twofold compared with ZN control cells. G2/M blockage in ZS cells was coupled with the observation of elevated p21 gene expression. In ZS cells, the abrogation of p21 protein induction by the transfection of p21 siRNA was shown to alleviate the G2/M blockage, demonstrating the positive linkage of p21 elevation and G2/M blockage. Abolishment of the increase in p53 protein in ZS cells with transfection of p53 siRNA normalized the elevated p21 protein to a similar level as in ZN control cells, which demonstrated that the p21 induction is p53 dependent. Furthermore, the normalization of p53 protein by siRNA treatment in ZS cells alleviated cell growth depression and G2/M blockage, which demonstrated that p53 was involved in the high zinc status-induced G2/M blockage and growth depression. Thus high zinc status in NHBE cells upregulates p53 expression which in turn elevates p21 that eventually induces G2/M blockage.  相似文献   

16.
Translational regulation of human p53 gene expression.   总被引:10,自引:2,他引:8       下载免费PDF全文
L Fu  M D Minden    S Benchimol 《The EMBO journal》1996,15(16):4392-4401
  相似文献   

17.
18.
19.
Wild‐type p53 functions as a tumour suppressor while mutant p53 possesses oncogenic potential. Until now it remains unclear how a single mutation can transform p53 into a functionally distinct gene harbouring a new set of original cellular roles. Here we show that the most common p53 cancer mutants express a larger number and higher levels of shorter p53 protein isoforms that are translated from the mutated full‐length p53 mRNA. Cells expressing mutant p53 exhibit “gain‐of‐function” cancer phenotypes, such as enhanced cell survival, proliferation, invasion and adhesion, altered mammary tissue architecture and invasive cell structures. Interestingly, Δ160p53‐overexpressing cells behave in a similar manner. In contrast, an exogenous or endogenous mutant p53 that fails to express Δ160p53 due to specific mutations or antisense knock‐down loses pro‐oncogenic potential. Our data support a model in which “gain‐of‐function” phenotypes induced by p53 mutations depend on the shorter p53 isoforms. As a conserved wild‐type isoform, Δ160p53 has evolved during millions of years. We thus provide a rational explanation for the origin of the tumour‐promoting functions of p53 mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号