首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a recombinant product from the structurally abnormal Y chromosome, Y*, female mice with a single X of either maternal or paternal origin were generated. The two types of females were produced on the same genetic background and differ only in the origin of the X chromosome. Hence it has been possible to assess the effect of parental origin of the X on survival of females with a single X chromosome. A highly significant prenatal loss of females with a single X of paternal origin, but no comparable loss of females with a single X of maternal origin was observed. The reduced viability of females with a paternally derived X could be mediated by the parental origin of the X (i.e. X chromosome imprinting) or alternatively, since the mothers of females with a single paternally derived X have only a single X chromosome, the effect could be mediated by the genotype of the mother (i.e. maternal uterine effect).  相似文献   

2.
We have observed an abnormal genetic segregation in the progeny of crosses between males of the F71 (y wa/Y.w+) strain and females of various strains carrying marker mutations on their chromosome 2. The Y.w+ chromosome, previously described as possibly being associated with a translocation of the 22D region of chromosome 2, was shown to carry the 21A1-22E4 tip of the 2L chromosome. One chromosome 2 of F71 had a deletion of this region. The abnormal genetic segregation observed in the progeny of different crosses can be explained both by the partial lethality (which becomes severe in some homogeneous genetic backgrounds) due to trisomy of the 21A1-22E4 chromosome 2 fragment and by the lethality associated with monosomy of this 21A1-22E4 segment.  相似文献   

3.
Due to the complete absence of ribosomal DNA (genetic symbol bb-), the Xbb- chromosome of Drosophila is lethal both in homozygous conditions and in compound with the Xbb- chromosome. However, in the cross between the C(1)RM/Ybb- females and the Xbb-/BSYbb+ males, characterized by the development of lethal Xbb-/Ybb- zygotes, two fertile males were detected. These males possessed all the markers of the Xbb- chromosome but lacked the Y chromosome BS marker. Genetic analysis of their progeny showed that genes responsible for restoration of viability and fertility of these exceptional males were associated with the X chromosome. The crossover tests showed that in one case these genes were tightly linked to the w locus (the bbAM1 allele), and in the second case they were located 12.6 map units to the right of the Tu locus (the bbAM7 allele). It has also been shown that the bb locus was transposed to the X chromosome within the short arm of Y chromosome. Transposition of the BSYbb+ chromosome-specific rDNA sequences to the X chromosome was confirmed by means of Southern blotting. These data indicate that replacement of the bb locus is realized by transposition rather than recombination.  相似文献   

4.
Y Inoue 《Genetica》1992,87(3):169-173
The purpose of this study was to evaluate the attached-X method compared with the standard Basc method, and, using this method, to find out whether the observed differences in genetic polymorphisms are related to differences in lethal mutation rates in D. melanogaster and D. simulans. When EMS-treated Drosophila melanogaster males are mated to untreated attached-X females, a decrease in the progeny sex ratio (male/female + male) is observed due to the induced lethal mutations on the X chromosome. The decrease in the frequency of male progeny were shown as the attached-X index. The expected male number is calculated from the control sex ratio. The difference between the expected and the observed male numbers, expressed as the ratio to the expected male number, defines the attached-X index. The index values for various EMS concentrations were compared to the lethal frequencies obtained by the standard Basc method for the same EMS treatments, and gave a highly positive correlation (gamma = 0.993, p < 0.01, d.f. = 2), thus providing an alternative method for evaluation of possible mutagens. The attached-X method was applied to D. simulans, of which natural populations are known to have relatively low genetic variation, and frequencies of the EMS-induced X chromosome lethal mutations were estimated and compared with those in D. melanogaster. The results indicate that D. melanogaster is slightly more sensitive in the sperm and spermatogonial stages, but less susceptible in the spermatid stage when compared with D. simulans.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
During gametogenesis, chromosomes may become imprinted with information which facilitates proper expression of the DNA in offspring. We have used a position effect variegation mutant as a reporter system to investigate the possibility of imprinting inDrosophila melanogaster. Genetic crosses were performed in which the variegating gene and a strong modifier of variegation were present either within the same parental genome or in opposite parental genomes in all possible combinations. Our results indicate that the presence of the variegating chromosome and a modifier chromosome in the same parental genome can alter the amount of variegation formed in progeny. The genomic imprinting we observed is not determined by the parental origin of the variegating chromosome but is instead determined by the genetic background the variegating chromosome is subjected to during gametogenesis.  相似文献   

6.
Recent theoretical and empirical work has suggested that the X chromosome may play a special role in the evolution of sexually dimorphic traits. We tested this idea by quantifying sex chromosome influence on male relative eyespan, a dramatically sexually selected trait in the stalk-eyed fly, Cyrtodiopsis dalmanni. After 31 generations of artificial sexual selection on eyespan:body length ratio, we reciprocally crossed high- with low-line flies and found no evidence for maternal effects; the relative eyespan of F1 females from high- and low-line dams did not differ. However, F1 male progeny from high-line dams had longer relative eyespan than male progeny from low-line dams, indicating X-linkage. Comparison of progeny from a backcross involving reciprocal F1 males and control line females confirmed X-linked inheritance and indicated no effect of the Y chromosome on relative eyespan. We estimated that the X chromosome accounts for 25% (SE = 6%) of the change in selected lines, using the average difference between reciprocal F1 males divided by the difference between parental males, or 34%, using estimates of the number of effective factors obtained from reciprocal crosses between a high and low line. These estimates exceed the relative size of the X in the diploid genome of a male, 11.9% (SE = 0.3%), as measured from mitotic chromosome lengths. However, they match expectations if X-linked genes in males exhibit dosage compensation by twofold hyperactivation, as has been observed in other flies. Therefore, sex-linked expression of relative eyespan is likely to be commensurate with the size of the X chromosome in this dramatically dimorphic species.  相似文献   

7.
The genetically induced increase in the number of 18S + 28S ribosomal genes known as magnification has been reported to occur in male Drosophila but has not previously been observed in females. We now report that bobbed magnified (bbm) is recovered in progeny of female Drosophila carrying three different X bobbed (Xbb) chromosomes and the helper XYbb chromosome, which is a derivative of the Ybb- chromosome. Using different combinations of bb or bb+ X and Y chromosomes, we show that magnification in females requires both a deficiency in ribosomal genes and the presence of a Y chromosome: X/X females that are rDNA-deficient but do not carry a Y chromosome do not produce bbm; similarly, X/X/Y females that carry a Y chromosome but are not rDNA-deficient do not produce bbm. Bobbed magnified is only recovered from rDNA-deficient X/XY, X/X/Y or XX/Y females. We have also found that females carrying a ring Xbb chromosome together with the XYbb- chromosome do not produce bbm, indicating that ring X chromosomes are inhibited to magnify in females as in males. We postulate that the requirement for a Y chromosome is due to sequences on the Y chromosome that regulate or encode factor(s) required for magnification, or alternatively, affect pairing of the ribosomal genes.--These studies demonstrate that magnification is not limited to males but also occurs in females. Magnification in females is induced by rDNA-deficient conditions and the presence of a Y chromosome, and probably occurs by a mechanism similar to that in males.  相似文献   

8.
The autosomal recessive, maternal-effect mutation abnormal oocyte (abo: 2-38) preferentially lowers the viability os XO progeny. The severity of the sex-ratio distortion is reduced by duplications of maternal or zygotic heterochromatin (SANDLER 1970, 1977; PARRY and SANDLER 1974). Utilizing X-chromosome inversions that contain modifications in the quantity and arrangement of the heterochromatic functions, Xhabo and cr+, wer have extended our investigations of abo's influence on XO male recovery and rDNA redundancy (KRIDER, YEDVOBNICK and LEVINE 1979).--XO males bearing In(1)SCS1LSC4R or In(1)Wm4LSC4R are recovered twice as frequently as X chromosomes containing a single Xh region, implying that these inversions possess a duplication of Xhabo. abo mutant females heterozygous for In(1)SCS1LSC4R and wild-type X chromosomes generate XO progeny that do not contain elevated rDNA redundancies. XO males containing In(1)Wm4 exhibit male recoveries and rDNA elevations similar to those of males bearing a wild-type X chromosome, when both derive from a common abo/abo mother. Reciprocal crosses baetween In(1)Wm4 and Canton-S males to attached-X abo females show significant, though reuduced, sex ratios in the absence of an rDNA effect. The observation that abo can elevate the rDNA redundancy of In(1)Wm4, a chromosome that does not compensate, suggests that abo and cr+ functions are not directly related.  相似文献   

9.
Maggert KA  Golic KG 《Genetics》2005,171(3):1103-1114
The homing endonuclease I-CreI recognizes a site in the gene encoding the 23S rRNA of Chlamydomonas reinhardtii. A very similar sequence is present in the 28S rRNA genes that are located on the X and Y chromosomes of Drosophila melanogaster. In this work we show that I-CreI expression in Drosophila is capable of causing induced DNA damage and eliciting cell cycle arrest. Expression also caused recombination between the X and Y chromosomes in the heterochromatic regions where the rDNA is located, presumably as a result of a high frequency of double-strand breaks in these regions. Approximately 20% of the offspring of males expressing I-CreI showed exceptional inheritance of X- and Y-linked markers, consistent with chromosome exchange at rDNA loci. Cytogenetic analysis confirmed the structures of many of these products. Exchange between the X and Y chromosomes can be induced in males and females to produce derivative-altered Y chromosomes, attached-XY, and attached-X chromosomes. This method has advantages over the traditional use of X rays for generating X-Y interchanges because it is very frequent and it generates predictable products.  相似文献   

10.
Two new X-autosome Robertsonian (Rb) translocations, Rb(X.9)6H and Rb(X.12)7H, were found during the course of breeding the Rb(X.2)2Ad rearrangement at Harwell. The influence of these new Rbs on meiotic chromosome segregation was investigated in hemizygous males and heterozygous females and compared to that of Rb(X.2)2Ad. Screening of metaphase II spermatocytes gave incidences of sex chromosome aneuploidy of 9.2% in Rb(X.2)6H/Y and 9.6% in Rb(X.9)2Ad/Y males; no metaphase II cells were present in the testes of the Rb(X.12)7H/Y males examined and no males with this karyotype have so far proved fertile. In breeding tests, 5% of the progeny of Rb(X.2)2Ad/Y males were sex chromosome aneuploids compared to 10% of the Rb(X.9)6H/Y offspring. The difference was not significant, however. Cytogenetic analyses of metaphase II stage oocytes showed elevated rates of hyperhaploidy (n + 1) in Rb heterozygous females over chromosomally normal mice: 4.2% for Rb(X.2)2Ad/+; 2.1% for Rb(X.9)6H/+; 2.2% for Rb(X.12)7H/+ and 1.1% for normal females. There was, however, no statistically significant difference in the rates of hyperhaploidy between the three different Rb types, nor overall between Rb/+ and normal females. Karyotypic analyses of liveborn offspring of Rb heterozygous females revealed low incidences of X0 animals but no other type of sex chromosome aneuploidy. Intercrosses of heterozygous females and hemizygous males yielded 5.5% aneuploidy for Rb(X.2)2Ad and 5.4% for Rb(X.9)6H. In heterozygous females, there was evidence from the metaphase II and breeding test data for all three rearrangements, of preferential segregation of the Rb metacentric to the polar body resulting in a deficiency of cells and progeny carrying a translocation chromosome.  相似文献   

11.
The existence of fertile A. azarae females with a chromosome sex pair indistinguishable from that of males was reported more than 35 years ago. These heterogametic females were initially thought to occur due to an extreme process of dosage compensation in which X inactivation was restricted to Xp and complemented by a deletion of Xq (Xx females). Later on, a C-banding analysis of A. mollis variant females showed that these specimens were in fact XY* sex reversed and not Xx females. The finding of positive testing for Zfy and Sry multiple-copy genes in Akodon males and heterogametic females confirmed the XY* assumption. At the present time, XY* sex reversed females have been found to exist in nine Akodon species. Akodon heterogametic females produce X and Y* oocytes, which upon sperm fertilization give rise to viable XX (female), XY* (female), and XY (male) embryos, and to non-viable Y*Y zygotes. Heterozygous females exhibit a better reproductive performance than XX females in order to compensate the Y*Y zygote wastage. XY* sex reversed females are assumed to occur due to a deficient Sry expression resulting in the development of ovaries instead of testes. Moreover, the appearance of Y* elements is a highly recurrent event. It is proposed that homozygosity for an autosomal or pseudoautosomal recessive mutation (s-) inhibits Sry expression giving rise to XY* embryos with ovary development. Location of the Y* chromosome in the female germ cell lineage produces an ovary-specific imprinting of the Sry* gene maintaining its defective expression through generations independently from the presence or absence of s- homozygosity. By escaping the ovary-specific methylation some Y* chromosomes turn back to normal Ys producing Y oocytes capable of generating normal male embryos when fertilized by an X sperm. Fluctuations in the rate of variant females in field populations and in laboratory colonies of Akodon depend on the balance between the appearance of new variant females (s-/s-, XY* specimens) and the extinction of sex reversed specimens due to imprinting escape.  相似文献   

12.
Nonagouti (KP X C57BL)F1 hybrid females were artificially inseminated with a mixture of spermatozoa from males of the KE (nonagouti) and CBA (agouti) strains and the genotype of young was estimated by fur pigmentation. When KE and CBA spermatozoa mixed in the ratios of 1:1, 2:1 and 4:1 were inseminated after ovulation, 87%, 56% and 29% of progeny, respectively, were sired by CBA males, i.e. proportions of CBA progeny were significantly higher than ratios of CBA spermatozoa in the mixture. The surplus of CBA progeny was significantly less in females inseminated before ovulation, which may suggest that more rapid capacitation of CBA spermatozoa is partly responsible for their competitive advantage. In preparations from oviducal flushings of females killed 2-3 h after insemination, CBA spermatozoa (recognized by their shape) were found in similar proportions as in the inseminated mixture. There was therefore no evidence of their preferential selection at the uterotubal junction. No competitive advantage of CBA spermatozoa occurred when they were inseminated with spermatozoa from males of the KE.CBA strain, congenic with KE but with the Y chromosome derived from the CBA strain. This indicates that genetic factors linked with the Y chromosome may influence competitive ability of spermatozoa.  相似文献   

13.
The sex-ratio trait that exists in a dozen Drosophila species is a case of naturally occurring X chromosome drive that causes males to produce female-biased progeny. Autosomal and Y polymorphism for suppressors are known to cause variation in drive expression, but the X chromosome polymorphism has never been thoroughly investigated. We characterized 41 X chromosomes from a natural population of Drosophila simulans that had been transferred to a suppressor-free genetic background. We found two clear-cut groups of chromosomes, sex-ratio and standard. The sex-ratio X chromosomes differed in their segregation ratio (81-96% females in the progeny), the less powerful drivers being less stable in their expression. A sib analysis, using a moderate driver, indicated that within-X variation in drive expression depended on genetic (autosomal) or epigenetic factors and that the age of the males also affected the trait. The other X chromosomes produced equal or roughly equal sex ratios, but again with significant variation. The continuous pattern of variation observed within both groups suggested that, in addition to a major sex-ratio gene, many X-linked loci of small effect modify the segregation ratio of this chromosome and are maintained in a polymorphic state. This was also supported by the frequency distribution of sex ratios produced by recombinant X chromosomes.  相似文献   

14.
Maggert KA  Golic KG 《Genetics》2002,162(3):1245-1258
Genomic imprinting is well known as a regulatory property of a few specific chromosomal regions and leads to differential behavior of maternally and paternally inherited alleles. We surveyed the activity of two reporter genes in 23 independent P-element insertions on the heterochromatic Y chromosome of Drosophila melanogaster and found that all but one location showed differential expression of one or both genes according to the parental source of the chromosome. In contrast, genes inserted in autosomal heterochromatin generally did not show imprint-regulated expression. The imprints were established on Y-linked transgenes inserted into many different sequences and locations. We conclude that genomic imprinting affecting gene expression is a general property of the Drosophila Y chromosome and distinguishes the Y from the autosomal complement.  相似文献   

15.
To increase our understanding of the role of new X-chromosome mutations in adaptive evolution, single-X Drosophila melanogaster males were mated with attached-X chromosome females, allowing the male X chromosome to accumulate mutations over 28 generations. Contrary to our hypothesis that male viability would decrease over time, due to the accumulation and expression of X-linked recessive deleterious mutations in hemizygous males, viability significantly increased. This increase may be attributed to germinal selection and to new X-linked beneficial or compensatory mutations, possibly supporting the faster-X hypothesis.  相似文献   

16.
The mammalian epigenetic phenomena of X inactivation and genomic imprinting are incompletely understood. X inactivation equalizes X-linked expression between males and females by silencing genes on one X chromosome during female embryogenesis. Genomic imprinting functionally distinguishes the parental genomes, resulting in parent-specific monoallelic expression of particular genes. N-ethyl-N-nitrosourea (ENU) mutagenesis was used in the mouse to screen for mutations in novel factors involved in X inactivation. Previously, we reported mutant pedigrees identified through this screen that segregate aberrant X-inactivation phenotypes and we mapped the mutation in one pedigree to chromosome 15. We now have mapped two additional mutations to the distal chromosome 5 and the proximal chromosome 10 in a second pedigree and show that each of the mutations is sufficient to induce the mutant phenotype. We further show that the roles of these factors are specific to embryonic X inactivation as neither genomic imprinting of multiple genes nor imprinted X inactivation is perturbed. Finally, we used mice bearing selected X-linked alleles that regulate X chromosome choice to demonstrate that the phenotypes of all three mutations are consistent with models in which the mutations have affected molecules involved specifically in the choice or the initiation of X inactivation.  相似文献   

17.
In the mealybug Planococcus citri, there are no identifiable sex chromosomes. Early in the development of embryos destined to become males, the genome contributed by the sperm undergoes heterochromatization and, following an inverted type of meiosis, will be eliminated. Only two vital sperms are therefore produced, both carrying the same maternally derived genome. A differential distribution observed on the two spermatids during male germline cyst formation of chromatin remodeling factors such as HP1 and methylated K9 histone H3 prompted us to propose an imprinting/sex determination model in which the imprinted sperm is the one to undergo heterochromatization at syngamy. The sex ratio is normally 1:1, but aged females are known to produce almost exclusively male progeny, suggesting that the imprinting pattern of the male gamete in P. citri, though necessary, is apparently not sufficient for sex determination. We report here that egg cells of aged females show larger amounts of HP1 and Su(Var)3–9 than egg cells of young females. These data suggest that a determinant of sex may be the amount of maternally derived heterochromatic proteins.  相似文献   

18.
Genomic imprinting: male mice with uniparentally derived sex chromosomes   总被引:2,自引:0,他引:2  
Although it has been known that there is an X-chromosome imprinting effect during early embryogenesis in female mammals, it remains unknown if parental origin of the X chromosome has an effect in males. Furthermore, it has not been possible to produce animals with normal sex chromosomes of uniparental origin to further evaluate such imprinting effects. We have devised a breeding scheme to produce male mice, designated XPYP males, in which both the X and Y chromosomes are paternally inherited. To our knowledge, these are the first mammals produced that have a normal sex chromosome constitution but with both sex chromosomes derived from one parent. Development and reproduction in these XPYP males and the sex ratio and chromosome constitution of their offspring appeared normal; thus there is no apparent effect in males of having both sex chromosomes derive from one parent or of having the X chromosome derived from an inappropriate parent. Although we have detected no X-chromosome imprinting effect in these males, evidence from other sources suggest that the X chromosome is parentally imprinted. Thus detection and definition of an imprint can depend on the assay used.  相似文献   

19.
To shed light on the biological origins of sex differences in neural tube defects (NTDs), we examined Trp53-null C57BL/6 mouse embryos and neonates at 10.5 and 18.5 days post coitus (dpc) and at birth. We confirmed that female embryos show more NTDs than males. We also examined mice in which the testis-determining gene Sry is deleted from the Y chromosome but inserted onto an autosome as a transgene, producing XX and XY gonadal females and XX and XY gonadal males. At birth, Trp53 nullizygous mice were predominantly XY rather than XX, irrespective of gonadal type, showing that the sex difference in the lethal effect of Trp53 nullizygosity by postnatal day 1 is caused by differences in sex chromosome complement. At 10.5 dpc, the incidence of NTDs in Trp53-null progeny of XY* mice, among which the number of the X chromosomes varies independently of the presence or absence of a Y chromosome, was higher in mice with two copies of the X chromosome than in mice with a single copy. The presence of a Y chromosome had no protective effect, suggesting that sex differences in NTDs are caused by sex differences in the number of X chromosomes.  相似文献   

20.
Two congenic lines of mice, one with a partial deletion of the Y chromosome, differ in the percentage of spermatozoa with abnormal heads: B10.BR/SgSn males give 22.6% and B10.BR-Ydel/Ms males give 64.2% abnormal sperm. The F1s resulting from crosses of B10.BR/SgSn males with females of five common inbred strains exhibited significantly lower levels of abnormal sperm than the parental strains, as opposed to F1 hybrids sired by B10.BR-Ydel/Ms mutant males, where very high levels of abnormal spermatozoa were found. About 30% of abnormal spermatozoa, produced by males with deletion on the Y chromosome, were characterized by a flat acrosomal cap. This class of abnormality was never observed in non-mutant males, suggesting a mutant-specific defect. These results demonstrate the important role of the Y chromosome in spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号