首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of Flooding and Drought on the Anatomy of Paspalum dilatatum   总被引:4,自引:0,他引:4  
Paspalum dilatatum occupies different topographic positionsin the Flooding Pampa, Argentina. Populations from differentpositions are subjected to various regimes of flooding and drought,both of which may occur in the same growing season. We investigatedthe constitutive and plastic anatomical traits of P. dilatatumpopulations from habitats with contrasting regimes of floodingand drought. Both events affected root and sheath anatomy, andthese effects were similar for clones from different topographicpositions. Flooding increased the aerenchymatous tissue in theroot cortex and the leaf sheaths and decreased the number ofroot hairs per unit of root length. Drought decreased the diameterof root metaxylem vessels, thus lowering the risk of embolismsand increasing water-flow resistance, and increased the numberof root hairs, thereby increasing water uptake ability. In additionto these plastic responses, all clones showed constitutive characteristicsthat may confer an ability to withstand sudden events of floodingor drought: a high proportion of aerenchyma, which may maintainaeration before plastic responses take place; sclerenchyma,which may prevent root and leaf sheath collapse by soil compaction;and a conspicuous endodermis, which may protect stelar tissuesfrom desiccation. Both constitutive and plastic anatomical characteristicsare likely to contribute to the ability of this species to occupywidely different topographic positions and to resist temporalvariations in water and oxygen availability. Copyright 2001Annals of Botany Company Flooding, drought, aerenchyma, vessels, roots, leaf sheaths, anatomy, Paspalum dilatatum Poir  相似文献   

2.
Morphological and anatomical factors such as aerenchyma formation in roots and the development of adventitious roots are considered to be amongst the most important developmental characteristics affecting flooding tolerance. In this study we investigated the lengths of adventitious roots and their capacity to form aerenchyma in three- and four-week-old seedlings of two maize (Zea mays ssp. mays, Linn.) inbred accessions, B64 and Na4, and one teosinte, Z. nicaraguensis Iltis & Benz (Poaceae), with and without a flooding treatment. Three weeks after sowing and following a seven day flooding treatment, both maize and teosinte seedlings formed aerenchyma in the cortex of the adventitious roots of the first three nodes. The degree of aerenchyma formation in the three genotypes increased with a second week of flooding treatment. In drained soil, the two maize accessions failed to form aerenchyma. In Z. nicaraguensis, aerenchyma developed in roots located at the first two nodes three weeks after sowing. In the fourth week, aerenchyma developed in roots of the third node, with a subsequent increase in aerenchyma in the second node roots. In a second experiment, we investigated the capacity of aerenchyma to develop in drained soil. An additional three teosinte species and 15 maize inbred lines, among them a set of flooding-tolerant maize lines, were evaluated. Evaluations indicate that accessions of Z. luxurians (Durieu & Asch. Bird) and two maize inbreds, B55 and Mo20W, form aerenchyma when not flooded. These materials may be useful genetic resources for the development of flooding-tolerant maize accessions.  相似文献   

3.
Influence of factors governing the soil-plantatmosphere system on components of water relations and yield was studied in two clones of rubber tree,Hevea brasiliensis, viz. RRII 105 and RRII 118. Clonal variations were evident in yield and yield components and associated physiological parameters in response to soil moisture status and meteorological factors. Observations made during different seasons indicatedvariations in yield are attributed to differences in plugging index and initial flow rates, to the major yield components and also variations in components of water relations as influenced by meteorological factors. Among the two clones, RRII 105 was found to be fairly drought tolerant compared to RRII 118. RRII 105 was found to respond well to dry weather through higher stomatal resistances, higher leaf water potentials, lowered transpirational water loss and lower relative transpiration ratios, while RRII 118 was susceptible to stress situations.  相似文献   

4.
Flooding is a major problem in many areas of the world and soybean is susceptible to the stress. Understanding the morphological mechanisms of flooding tolerance is important for developing flood-tolerant genotypes. We investigated secondary aerenchyma formation and function in soybean (Glycine max) seedlings grown under flooded conditions. Secondary aerenchyma, a white and spongy tissue, was formed in the hypocotyl, tap root, adventitious roots and root nodules after 3 weeks of flooding. Under irrigated conditions aerenchyma development was either absent or rare and phellem was formed in the hypocotyl, tap root, adventitious roots and root nodules. Secondary meristem partially appeared at the outer parts of the interfascicular cambium and girdled the stele, and then cells differentiated to construct secondary aerenchyma in the flooded hypocotyl. These morphological changes proceeded for 4 days after the initiation of the flooding. After 14 days of treatment, porosity exceeded 30% in flooded hypocotyl with well-developed secondary aerenchyma, while it was below 10% in hypocotyl of irrigated plants that had no aerenchyma. When Vaseline was applied to the hypocotyl of plants from a flooded treatment to prevent the entry of atmospheric oxygen into secondary aerenchyma, plant growth, especially that of roots, was sharply inhibited. Thus secondary aerenchyma might be an adaptive response to flooding.  相似文献   

5.
Summary Soil waterlogging responses were examined in three Spartina patens populations along a steep flooding gradient in coastal Louisiana. Root anatomy and physiological indicators of anaerobic metabolism were examined to identify and compare flooding responses in dune, swale and marsh populations, while soil physicochemical factors were measured to characterize the three habitats. Soil waterlogging increased along the gradient from dune to marsh habitats and was accompanied by increases in root porosity (aerenchyma). Aerenchyma in marsh roots was apparently insufficient to provide enough oxygen for aerobic respiratory demand, as indicated by high root alcohol dehydrogenase activities and low energy charge ratios. Patterns of root metabolic indicators suggest that dune and swale roots generally respired aerobically, while anaerobic metabolism was important in marsh roots. However, in each population, relatively greater soil waterloging was accompanied by differences in enzyme activities leading to malate accumulation. In dune and swale roots under these circumstances, depressed adenylate energy charge ratios may have been the result of an absence of increased ethanol fermentation. These trends suggest that: 1) Aerenchyma formation was an important, albeit incomplete, long-term adaptation to the prevalent degree of soil waterlogging. 2) All populations adjusted root metabolism in response to a relative (short-term) increase in soil waterlogging.  相似文献   

6.
Summary An investigation was carried out to study whether differences in rooting depth, root weight and vertical distribution of roots in the soil were some of the factors responsible for clonal variation in drought resistance in tea. The results showed that of these factors only rooting depth influenced drought resistance. Shallow rooted clones were drought susceptible and deep rooted clones drought resistant. In shallow rooted clones drought resistance increased with rooting depth. However in deep rooted clones drought resistance was not related to rooting depth.  相似文献   

7.
8.
Maize (Zea mays L.) is generally considered to be a plant with aerenchyma formation inducible by environmental conditions. In our study, young maize plants, cultivated in various ways in order to minimise the stressing effect of hypoxia, flooding, mechanical impedance or nutrient starvation, were examined for the presence of aerenchyma in their primary roots. The area of aerenchyma in the root cortex was correlated with the root length. Although 12 different maize accessions were used, no plants without aerenchyma were acquired until an ethylene synthesis inhibitor was employed. Using an ACC-synthase inhibitor, it was confirmed that the aerenchyma formation is ethylene-regulated and dependent on irradiance. The presence of TUNEL-positive nuclei and ultrastructural changes in cortical cells suggest a connection between ethylene-dependent aerenchyma formation and programmed cell death. Position of cells with TUNEL-positive nuclei in relation to aerenchyma-channels was described.  相似文献   

9.
H. Shiba  H. Daimon 《Plant and Soil》2003,255(1):209-215
The effect of up to 48 h of flooding on the development of roots of Sesbania cannabina an0d S. rostrata seedlings was examined in a pot experiment. Light microscopy revealed that the outermost cells of the phellogen of the taproot of S. cannabina expanded and elongated during the first 12 h of flooding. After 18 h, the outermost of these regions was composed of cells that had expanded radially direction to form a spongy zone inside the endodermis. These elongated cells were radially connected to each other and formed the secondary aerenchyma surrounding the stele of taproot. While those histological alterations were not observed in S. rostrata, the number of layers of cells originating in the pericycle increased slightly, but elongation of the cells was not found during the first 18 h of flooding. After 36 h of flooding, cell elongation was also detected as outer layers of the phellogen. The delayed response to flooding in aerenchyma production in S. rostrata was compensated by immediate development of adventitious roots on submerged parts of the hypocotyl.  相似文献   

10.
红树植物淹水胁迫响应研究进展   总被引:20,自引:1,他引:19  
陈鹭真  林鹏  王文卿 《生态学报》2006,26(2):586-593
潮汐淹水是红树植物面临的主要环境胁迫之一,也是导致目前红树林造林成活率低的一个关键因子。由于长期适应于水淹生境,红树植物发育出一套适应于潮间带生长的抗淹水机制。综述了与红树植物相关的抗淹水胁迫响应机制,包括了形态结构、生长、水分和光合作用、膜脂过氧化系统和根系脱氢酶系统、内源激素和胁迫多胺等5个方面。提出应用人工潮汐系统研究红树植物的淹水抗性机理是确定不同种类红树植物的耐淹水能力的有效手段。并指出生长的研究是淹水胁迫响应研究的基础,而与分子手段相结合的激素水平的研究将在红树植物抗性胁迫研究中得到重视。  相似文献   

11.
Pterocarpus officinalis (Jacq.) seedlings inoculated with the arbuscular mycorrhizal fungus, Glomus intraradices, and the strain of Bradyrhizobium sp. (UAG 11A) were grown under stem-flooded or nonflooded conditions for 13 weeks after 4 weeks of nonflooded pretreatment under greenhouse conditions. Flooding of P. officinalis seedlings induced several morphological and physiological adaptive mechanisms, including formation of hypertrophied lenticels and aerenchyma tissue and production of adventitious roots on submerged portions of the stem. Flooding also resulted in an increase in collar diameter and leaf, stem, root, and total dry weights, regardless of inoculation. Under flooding, arbuscular mycorrhizas were well developed on root systems and adventitious roots compared with inoculated root systems under nonflooding condition. Arbuscular mycorrhizas made noteworthy contributions to the flood tolerance of P. officinalis seedlings by improving plant growth and P acquisition in leaves. We report in this study the novel occurrence of nodules connected vascularly to the stem and nodule and arbuscular mycorrhizas on adventitious roots of P. officinalis seedlings. Root nodules appeared more efficient fixing N2 than stem nodules were. Beneficial effect of nodulation in terms of total dry weight and N acquisition in leaves was particularly noted in seedlings growing under flooding conditions. There was no additive effect of arbuscular mycorrhizas and nodulation on plant growth and nutrition in either flooding treatment. The results suggest that the development of adventitious roots, aerenchyma tissue, and hypertrophied lenticels may play a major role in flooded tolerance of P. officinalis symbiosis by increasing oxygen diffusion to the submerged part of the stem and root zone, and therefore contribute to plant growth and nutrition.  相似文献   

12.
The turlough form of Ranunculus repens is subjected to several months' complete inundation with hard groundwater. Experimental flooding to the level of the soil surface had no effect on turlough or ruderal populations relative to drained controls. Experimental submergence resulted in direct tissue death of the ruderal population but did not affect the turlough population relative to drained controls. There was no detectable difference in the proportion of aerenchyma in drained, flooded and submerged roots of plants from either population. The proportion of aerenchyma increased with root age in the ruderal population. Up to twice the proportion of aerenchyma occurred in the lower third of the root in the turlough population relative to the middle and upper thirds. Submergence in artificially hardened tap water increased the amount of tissue death in the ruderal population, whereas it appeared to enhance the growth of plants from the turlough population relative to that of plants submerged in tap water. Only the ruderal population demonstrated a depth accommodation response in submerged conditions. Root concentrations of ethanol-soluble carbohydrates were up to three times higher in a field- collected turlough population during winter and autumn months than those in a ruderal population. Low levels of ethanol-insoluble carbohydrates were present in the turlough population but were absent from the ruderal population. Starch concentrations fluctuated greatly in the turlough population and were generally higher than those in the ruderal population. These results, together with those from previous investigations, suggest that the turlough population survives prolonged submergence by maintaining low levels of submerged photosynthesis, which may circulate oxygen within the plant tissues, and by utilizing storage carbohydrates for maintenance respiration.  相似文献   

13.
We investigated some aspects of flooding tolerance in two riparian populations (exposed and no exposed to flooding) of Luehea divaricata C. Martius. Plants derived from seeds collected in each population were submitted to flooding (30 and 60 d), submergence and re-aeration treatments. Plants exposed to flooding showed development of aerenchyma, hypertrophic lenticels and new adventitious roots. Interestingly, whereas the plants originated from population naturally exposed to flooding developed some of these alterations more markedly, they could not survive when totally submerged. The random amplified polymorphic DNA (RAPD) markers, showed a significant difference between populations, suggesting that seasonal flooding on riparian populations of L. divaricata has been selecting individuals who are more adapted to survive in these conditions.  相似文献   

14.
Responses to soil flooding and oxygen shortage were studied in field, glasshouse and controlled environment conditions. Established stools ofSalix viminalis L., were compared at five field sites in close proximity but with contrasting water table levels and flooding intensities during the preceding winter. There was no marked effect of site on shoot extension rate, time to half maximum length or final length attained. When rooted cuttings were waterlogged for 4 weeks in a glasshouse, soil redox potentials quickly decreased to below zero. Shoot extension was slowed after a delay of 20 d, while, in the upper 100 mm of soil, formation and outgrowth of unbranched adventitious roots with enhanced aerenchyma development was promoted after 7 d. At depths of 100–200 mm and 200–300 mm, extension by existing root axes was halted by soil flooding, while adventitious roots from above failed to penetrate these deeper zones. After 4 weeks waterlogging, all arrested root tips recommenced elongation when the soil was drained; their extension rates exceeding those of roots that were well-drained throughout. Growth in fresh mass was also stimulated. The additional aerenchyma found in adventitious roots in the upper 100 mm of soil may have been ethylene regulated since gas space development was inhibited by silver nitrate, an ethylene action inhibitor. The effectiveness of aerenchyma was tested by blocking the entry of atmospheric oxygen into plants with lanolin applied to lenticels of woody shoots of plants grown in solution culture. Root extension was halved, while shoot growth remained unaffected. H Lambers Section editor  相似文献   

15.
《Flora》2005,200(4):354-360
Paspalum modestum and P. wrightii are perennial grasses growing in permanent and seasonally flooded areas, respectively. The former produces short rhizomes and floating culms, the latter forms long rhizomes and erect culms. Variations in percentage aerenchymatous space (PAS) in different organs as a response to flooding was analysed using a clone of each species. Eighteen plantlets of each clone were cultivated during 7 months under flooded vs. unflooded conditions. After this period, roots, rhizomes, culms, and leaf sheaths were collected and prepared. PAS was measured using an image analysis device, and data were analysed using ANOVA.Production of aerenchyma took place in both species within the cortical parenchyma of roots, rhizomes and culms, and the mesophyll of leaf sheaths, both in flooded and unflooded plants. Under flooding conditions PAS increased in both species, although the individual response of organs differed: whereas in P. modestum PAS increased primarily in substratum-fixed roots, in P. wrightii all organs produced additional aerenchyma uniformly. Contrasting responses are understood as adaptations to permanent and seasonal flooding, respectively.  相似文献   

16.
张小萍  曾波  陈婷  叶小齐  罗芳丽  刘巅 《生态学报》2008,28(4):1864-1871
野古草(Arundinella anomala var. depauperata Keng)在三峡库区长江及其支流江(河)岸有广泛分布,对水淹有很好的耐受能力.有研究表明许多植物在水淹时通气组织发生增强,通气组织的产生改善了植株通气状况,提高了植物对水淹的抵御能力.为了研究水淹是否会影响野古草的通气组织发生以及野古草通气组织发生对水淹的反应,考察了不同水淹深度、不同水淹时间和不同水淹方式处理时野古草茎中通气组织的发生情况.实验中共设置3个水淹深度:不进行水淹(对照)、植株地下部分淹没、植株完全淹没于水下2m深处;5个淹没时间:植株被淹没的时间长度分别为5、10、20、30d和60d;2种水淹方式:连续水淹和间歇水淹.实验结果表明:(1)在无水淹情况下野古草茎中可以产生通气组织,通气组织产生随植株的生长而增强;水淹加快了野古草通气组织发生的进程,促进了野古草通气组织的提前发生.(2)野古草茎中通气组织并不会因为水淹的时间越长而产生越多,植株通气组织的大小达到一定程度后不再因水淹时间的增长而继续增大.(3)淹没深度对通气组织发生有一定影响,总的看来,地下部分淹没野古草植株的通气组织发生要强于完全淹没植株.(4)不同水淹方式对野古草通气组织发生的影响因水淹深度不同而有差异.在完全淹没情况下,连续水淹植株的通气组织比间歇水淹植株的通气组织发达;在地下部分淹没情况下,除水淹初期外,随水淹时间的延长,连续水淹植株通气组织发生与间歇水淹植株没有差异.  相似文献   

17.
With the impending threat that climate change is imposing on all terrestrial ecosystems, the ability of plants to adjust to changing environments is, more than ever, a very desirable trait. Tomato (Solanum lycopersicum L.) plants display a number of responses that allow them to survive under different abiotic stresses such as flooding. We focused on understanding the mechanism that facilitates oxygen diffusion to submerged tissues and the impact it has on sustaining respiration levels. We observed that, as flooding stress progresses, stems increase their diameter and internal porosity. Ethylene triggers stem hypertrophy by inducing cell wall loosening genes, and aerenchyma formation seems to involve programmed cell death mediated by hydrogen peroxide. We finally assessed whether these changes in stem morphology and anatomy are indeed effective to restore oxygen levels in submerged organs. We found that aerenchyma formation and hypertrophy not only increase oxygen diffusion toward the base of the plant, but also result in an augmented respiration rate. We consider that this response is crucial to maintain adventitious root development under such conditions and, therefore, making it possible for the plant to survive when the original roots die.  相似文献   

18.
Abstract 1 This paper reports on experiments to determine how two different insecticide resistance phenotypes in the aphid Nasonovia ribisnigri (Mosley), which is a major pest of lettuce, change its susceptibility to pyrethroid insecticides and the carbamate pirimicarb. 2 A novel statistical approach determined how the effectiveness of different insecticides was changed by the two resistance phenotypes. This compared the between‐plant distribution of aphid numbers, as opposed to the mean number of aphids per plant. 3 Results from field cage experiments showed that the effect of the resistances differed. Pyrethroid resistance resulted in lower mortality immediately after application of pyrethroids, whereas resistance to pirimicarb shortened the time over which the chemical was effective. 4 The results of laboratory bioassays suggested that these two resistances were not found together in N. ribisnigri. However, the results reported here contradict this assertion. 5 Experiments with insecticide residues showed that reproduction of resistant N. ribisnigri was greater than that of susceptible N. ribisnigri on plants with ageing insecticide residues, even in circumstances where mortality of resistant and susceptible clones of N. ribisnigri were similar. 6 If more than a few aphids are found on a plant then a whole consignment can be rejected for processing. The results reported here suggest that the effect of both insecticide resistances in N. ribsinigri will be to increase the proportion of lettuce heads with an unacceptable number of aphids on them, leading to increased rejection of plants for processing.  相似文献   

19.
The effects of a severe drought on fine-root and ectomycorrhizal biomass were investigated in a forest ecosystem dominated by Pinus oaxacana located in Oaxaca, Mexico. Root cores were collected during both the wet and dry seasons of 1998 and 1999 from three sites subjected to different forest management treatments in 1990 and assessed for total fine-root biomass and ectomycorrhizal-root biomass. Additionally, a bioassay experiment with P. oaxacana seedlings was conducted to assess the ectomycorrhizal inoculum potential of the soil for each of the three stands. Results indicated that biomasses of both fine roots and ectomycorrhizal roots were reduced by almost 60% in the drought year compared to the nondrought year. There were no significant differences in ectomycorrhizal and fine-root biomass between the wet and dry seasons. Further, the proportion of total root biomass consisting of ectomycorrhizal roots did not vary between years or seasons. These results suggest that both total fine-root biomass and ectomycorrhizal-root biomass are strongly affected by severe drought in these high-elevation tropical pine forests, and that these responses outweigh seasonal effects. Forest management practices in these tropical pine forests should consider the effects of drought on the capacity of P. oaxacana to maintain sufficient levels of ectomycorrhizae especially when there is a potential for synergistic interactions between multiple disturbances that may lead to more severe stress in the host plant and subsequent reductions in ectomycorrhizal colonization.  相似文献   

20.
Responses to drought and flooding in tropical forage grasses   总被引:5,自引:0,他引:5  
Seasonal drought and flooding severely limit pasture growth in tropical savannas. The objective of this study is to analyze and compare yield, biomass allocation, leaf growth rate and nutrient concentration of four important perennial C4 forage grasses to short term flooding and moderate drought under controlled conditions. The grasses studied were the tufted Andropogon gayanus (CIAT 621) and Hyparrhenia rufa and the stoloniferous Echinochloa polystachya and Brachiaria mutica. All grasses were able to adjust their growth and development in response to flooding and drought: leaf growth and total biomass decreased under both treatments but the specific responses to these treatments differed markedly. Considering only total yield and leaf area, A. gayanus and H. rufa were relatively more tolerant to and less affected by drought whereas B. mutica and E. polystachya were more flood tolerant. In A. gayanus and H. rufa, both treatments reduced the proportion of assimilates devoted to roots and culms while increasing that of leaves decreasing the root/shoot ratio. In contrast, in B. mutica and E. polystachya only the proportion devoted to culms or stolons increased under flooding but the root/shoot ratio remained relatively stable under both treatments. All grasses produced adventitious rootlets except A. gayanus which was the most affected by flooding. Waterlogging decreased leaf nutrient concentration in all grasses which contributed to growth reduction. All species were relatively tolerant to both stresses. The results confirm the empirical observation that stoloniferous species B. mutica and E. polystachya are more tolerant to flooding thanks to adaptations typical of wetland plants such as hollow stolons which enhance oxygen diffusion to the roots and the development of adventitious rootlets that promotes water and nutrient absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号