首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The zebrafish has become an important genetic model, but their small size makes them impractical for traditional physiological studies. In contrast, the closely related giant danio is larger and can be utilized for physiological studies that can also make use of the extensive zebrafish genomic resources. In addition, the giant danio and zebrafish appear to exhibit different growth types, indicating the potential for developing a comparative muscle growth model system. Therefore, the present study was conducted to compare and characterize the muscle growth pattern of zebrafish and giant danio. Morphometric analyses demonstrated that giant danio exhibit an increased growth rate compared with zebrafish, starting as early as 2 wk posthatch. Total myotome area, mean fiber area, and total fiber number all exhibited positive correlations with larvae length in giant danio but not in zebrafish. Morphometric analysis of giant danio and zebrafish larvae demonstrated faster, more efficient growth in giant danio larvae. Similar to larger teleosts, adult giant danio exhibited increased growth rates in response to growth hormone, suggesting that giant danio exhibit indeterminate growth. In contrast, adult zebrafish do not exhibit mosaic hyperplasia, nor do they respond to growth hormone, suggesting they exhibit determinate growth like mammals. These results demonstrate that giant danio and zebrafish can be utilized as a direct comparative model system for muscle growth studies, with zebrafish serving as a model organism for determinate growth and giant danio for indeterminate growth.  相似文献   

2.
The aim of the present study was to analyse the morphology of white skeletal muscle in males and females from the GH-transgenic zebrafish (Danio rerio) lineage F0104, comparing the expression of genes related to the somatotrophic axis and myogenesis. Histological analysis demonstrated that transgenic fish presented enhanced muscle hypertrophy when compared to non-transgenic fish, with transgenic females being more hypertrophic than transgenic males. The expression of genes related to muscle growth revealed that transgenic hypertrophy is independent from local induction of insulin-like growth factor 1 gene (igf1). In addition, transgenic males exhibited significant induction of myogenin gene (myog) expression, indicating that myog may mediate hypertrophic growth in zebrafish males overexpressing GH. Induction of the α-actin gene (acta1) in males, independently from transgenesis, also was observed. There were no significant differences in total protein content from the muscle. Our results show that muscle hypertrophy is independent from muscle igf1, and is likely to be a direct effect of excess circulating GH and/or IGF1 in this transgenic zebrafish lineage.  相似文献   

3.
Most biological actions of growth hormone (GH) are mediated by the insulin-like growth factor I (IGF-I) that is produced after the interaction of the hormone with a specific cell surface receptor, the GH receptor (GHR). Even though the GH excess on fish metabolism is poorly known, several species have been genetically engineered for this hormone in order to improve growth for aquaculture. In some GH-transgenic fish growth has been dramatically increased, while in others high levels of transgene expression have shown inhibition of the growth response. In this study, we used for the first time different genotypes (hemizygous and homozygous) of a GH-transgenic zebrafish (Danio rerio) lineage as a model for studying the GH resistance induced by different GH transgene expression levels. The results obtained here demonstrated that homozygous fish did not grow as expected and have a lower condition factor, which implies a catabolic state. These findings are explained by a decreased IGF-I and GHR gene expression as a consequence of GH resistance. Together, our results demonstrated that homozygous GH-transgenic fish showed similar characteristics to the starvation-induced fish and could be an interesting model for studying the regulation of the GH/GHR/IGF-I axis in fish.  相似文献   

4.
5.
Growth hormone (GH) transgenesis presents a high potential application in aquaculture. However, excess GH may have serious consequences due to pleiotropic actions. In order to study these effects in zebrafish (Danio rerio), two transgenic lines were developed. The first expresses GH ubiquitously and constitutively (F0104 line), while the second expresses the GH receptor in a muscle-specific manner (Myo-GHR line). Results from the F0104 line showed accelerated growth but increased reproductive difficulties, while Myo-GHR did not show the expected increase in muscle mass. Since the two lines appeared to display complementary characteristics, a double transgenic (GH/GHR) was created via crossing between them. This double transgenic displayed accelerated growth, however reproductive parameters remained uncertain. The objective of the present study was to determine the reproductive capacity of males of this new line, by evaluating sperm parameters, expression of spermatogenesis-related genes, and reproductive tests. Double transgenics showed a strong recovery in almost all sperm parameters analyzed when compared to the F0104 line. Gene expression analyses revealed that Anti-Müllerian Hormone gene (amh) appeared to be primarily responsible for this recovery. Reproductive tests showed that double transgenic males did not differ from non-transgenics. It is possible that GHR excess in the muscle tissues of double transgenics may have contributed to lower circulating GH levels and thus reduced the negative effects of this hormone with respect to reproduction. Therefore, it is clear that GH-transgenesis technology should take into account the need to obtain adequate levels of circulating hormone in order to achieve maximum growth with minimal negative side effects.  相似文献   

6.
The somatotropic axis, composed essentially of the growth hormone (GH) and insulin-like growth factors (IGFs), is the main regulator of somatic growth in vertebrates. However, these protein hormones are also involved in various other major physiological processes. Although the importance of IGFs in mechanisms involving tissue regeneration has already been established, little is known regarding the direct effects of GH in these processes. In this study, we used a transgenic zebrafish (Danio rerio) model, which overexpresses GH from the beta-actin constitutive promoter. The regenerative ability of the caudal fin was assessed after repeated amputations, as well as the expression of genes related to the GH/IGF axis. The results revealed that GH overexpression increased the regenerated area of the caudal fin in transgenic fish after the second amputation. Transgenic fish also presented a decrease in gene expression of the GH receptor (ghrb), in opposition to the increased expression of the IGF1 receptors (igf1ra and igf1rb). These results suggest that transgenic fish have a higher sensitivity to IGFs than to GH during fin regeneration. With respect to the different IGFs produced locally, a decrease in igf1a expression and a significant increase in both igf2a and igf2b expression was observed, suggesting that igf1a is not directly involved in fin regeneration. Overall, the results revealed that excess GH enhances fin regeneration in zebrafish through igf2a and igf2b expression, acting indirectly on this major physiological process.  相似文献   

7.
Growth hormone (GH) transgenic fish are at a critical step for possible approval for commercialization. Since this hormone is related to salinity tolerance in fish, our main goal was to verify whether the osmoregulatory capacity of the stenohaline zebrafish (Danio rerio) would be modified by GH-transgenesis. For this, we transferred GH-transgenic zebrafish (T) from freshwater to 11 ppt salinity and analyzed survival as well as relative changes in gene expression. Results show an increased mortality in T versus non-transgenic (NT) fish, suggesting an impaired mechanism of osmotic acclimation in T. The salinity effect on expression of genes related to osmoregulation, the somatotropic axis and energy metabolism was evaluated in gills and liver of T and NT. Genes coding for Na+, K+-ATPase, H+-ATPase, plasma carbonic anhydrase and cytosolic carbonic anhydrase were up-regulated in gills of transgenics in freshwater. The growth hormone receptor gene was down-regulated in gills and liver of both NT and T exposed to 11 ppt salinity, while insulin-like growth factor-1 was down-regulated in liver of NT and in gills of T exposed to 11 ppt salinity. In transgenics, all osmoregulation-related genes and the citrate synthase gene were down-regulated in gills of fish exposed to 11 ppt salinity, while lactate dehydrogenase expression was up-regulated in liver. Na+, K+-ATPase activity was higher in gills of T exposed to 11 ppt salinity as well as the whole body content of Na+. Increased ATP content was observed in gills of both NT and T exposed to 11 ppt salinity, being statistically higher in T than NT. Taking altogether, these findings support the hypothesis that GH-transgenesis increases Na+ import capacity and energetic demand, promoting an unfavorable osmotic and energetic physiological status and making this transgenic fish intolerant of hyperosmotic environments.  相似文献   

8.
Sun H  Lin CH  Smith ME 《PloS one》2011,6(11):e28372

Background

Previous microarray analysis showed that growth hormone (GH) was significantly upregulated following acoustic trauma in the zebrafish (Danio rerio) ear suggesting that GH may play an important role in the process of auditory hair cell regeneration. Our objective was to examine the effects of exogenous and endogenous GH on zebrafish inner ear epithelia following acoustic trauma.

Methodology/Principal Findings

We induced auditory hair cell damage by exposing zebrafish to acoustic overstimulation. Fish were then injected intraperitoneally with either carp GH or buffer, and placed in a recovery tank for either one or two days. Phalloidin-, bromodeoxyuridine (BrdU)-, and TUNEL-labeling were used to examine hair cell densities, cell proliferation, and apoptosis, respectively. Two days post-trauma, saccular hair cell densities in GH-treated fish were similar to that of baseline controls, whereas buffer-injected fish showed significantly reduced densities of hair cell bundles. Cell proliferation was greater and apoptosis reduced in the saccules, lagenae, and utricles of GH-treated fish one day following trauma compared to controls. Fluorescent in situ hybridization (FISH) was used to examine the localization of GH mRNA in the zebrafish ear. At one day post-trauma, GH mRNA expression appeared to be localized perinuclearly around erythrocytes in the blood vessels of the inner ear epithelia. In order to examine the effects of endogenous GH on the process of cell proliferation in the ear, a GH antagonist was injected into zebrafish immediately following acoustic trauma, resulting in significantly decreased cell proliferation one day post-trauma in all three zebrafish inner ear end organs.

Conclusions/Significance

Our results show that exogenous GH promotes post-trauma auditory hair cell regeneration in the zebrafish ear through stimulating proliferation and suppressing apoptosis, and that endogenous GH signals are present in the zebrafish ear during the process of auditory hair cell regeneration.  相似文献   

9.
Even though growth hormone (GH) transgenesis has demonstrated potential for improved growth of commercially important species, the hormone excess may result in undesired collateral effects. In this context, the aim of this work was to develop a new model of transgenic zebrafish (Danio rerio) characterized by a muscle-specific overexpression of the GH receptor (GHR) gene, evaluating the effect of transgenesis on growth, muscle structure and expression of growth-related genes. In on line of transgenic zebrafish overexpressing GHR in skeletal muscle, no significant difference in total weight in comparison to non-transgenics was observed. This can be explained by a significant reduction in expression of somatotrophic axis-related genes, in special insulin-like growth factor I (IGF-I). In the same sense, a significant increase in expression of the suppressors of cytokine signaling 1 and 3 (SOCS) was encountered in transgenics. Surprisingly, expression of genes coding for the main myogenic regulatory factors (MRFs) was higher in transgenic than non-transgenic zebrafish. Genes coding for muscle proteins did not follow the MRFs profile, showing a significant decrease in their expression. These results were corroborated by the histological analysis, where a hyperplasic muscle growth was observed in transgenics. In conclusion, our results demonstrated that GHR overexpression does not induce hypertrophic muscle growth in transgenic zebrafish probably because of SOCS impairment of the GHR/IGF-I pathway, culminating in IGF-I and muscle proteins decrease. Therefore, it seems that hypertrophy and hyperplasia follow two different routes for entire muscle growth, both of them triggered by GHR activation, but regulated by different mechanisms.  相似文献   

10.
Thyroid hormone (TH)/insulin-like growth factor (IGF) signaling pathway has been identified in all the vertebrates, but its evolutionary origin remains elusive. In this study we examined the expression profiles in vitro as well as in vivo of the IGF-I gene of fish Danio rerio (vertebrate) and the IGF-like gene (IGFl) of amphioxus Branchiostoma japonicum (protochordate) following T3 treatment. Our results showed that T3 was able to enhance hepatic IGF-I/IGFl gene expression in vitro in both zebrafish and amphioxus in a dose-dependent manner. This T3-induced hepatic expression of IGF-I/IGFl genes in both species was significantly inhibited by the T3-specific inhibitor DEA, indicating the specificity of IGF-I/IGFl gene regulation by T3. At 100 nM T3, in both the long (42 h) and short (8 h) time course experiments, the IGF-I/IGFl gene expression profiles following T3 treatment in the tissue cultures of both species exhibited closely similar pattern and trend. Moreover, exposure of zebrafish and amphioxus to T3in vivo for 72 h induced a significant increase in the expression of IGF-I/IGFl genes in both the liver and the hepatic caecum. These data together suggest that amphioxus and zebrafish both share a similar regulatory mechanism of IGF gene expression in response to T3, providing an evidence for the presence of a vertebrate-like TH/IGF signaling pathway in the protochordate amphioxus.  相似文献   

11.
Activin A belongs to the superfamily of transforming growth factor-β and plays an important role in hormone regulation and tissue development. However, few research studies have been conducted on the effect of activin A on feeding organs in fish. In this study, the zebrafish (Danio rerio) larvae were treated with 1 ng ml–1 activin A for 8 days continuously. The haematoxylin and eosin (H&E) staining section results revealed that the transverse inner diameter of the pharynx and oesophagus significantly increased on the third and eighth days after treatment compared with the control group (P < 0.05). On the eighth day, the cross-sectional area of the pharyngeal muscle increased by 8638 μm2 compared to the control group (P < 0.05). The RNA in situ hybridization results also showed that the expression of skeletal muscle-specific genes (myog and myod) was significantly increased in pharyngeal muscle on the eighth day. Furthermore, the qRT-PCR results showed the expression of gh gene was significantly increased on the eighth day (P < 0.05). At the same time, more larvae in activin A group were able to feed larger brine shrimp (Artemia) than in the control group on the eighth day. In conclusion, activin A could affect feeding by promoting the inner diameter and muscle development of the pharynx and oesophagus in zebrafish larvae. This study is the first to report that the development of the pharynx and oesophagus can directly affect food intake in fish larvae, which provides a theoretical basis for the study of food intake of fish at an early stage.  相似文献   

12.
13.
A tissue-specific cDNA library was constructed using polyA+ RNA from pituitary glands of the Indian catfishHeteropneustes fossilis (Bloch) and a cDNA clone encoding growth hormone (GH) was isolated. Using polymerase chain reaction (PCR) primers representing the conserved regions of fish GH sequences the 3′ region of catfish GH cDNA (540 bp) was cloned by random amplification of cDNA ends and the clone was used as a probe to isolate recombinant phages carrying the full-length cDNA sequence. The full-length cDNA clone is 1132 bp in length, coding for an open reading frame (ORF) of 603 bp; the reading frame encodes a putative polypeptide of 200 amino acids including the signal sequence of 22 amino acids. The 5′ and 3′ untranslated regions of the cDNA are 58 bp and 456 bp long, respectively. The predicted amino acid sequence ofH. fossils GH shared 98% homology with other catfishes. Mature GH protein was efficiently expressed in bacterial and zebrafish systems using appropriate expression vectors. The successful expression of the cloned GH cDNA of catfish confirms the functional viability of the clone.  相似文献   

14.
Growth hormone overexpression increases growth and consequently increases the metabolic rate in fishes. Therefore, the objective of this study was to evaluate the effects of growth hormone overexpression in zebrafish Danio rerio in terms of growth, oxygen consumption, reactive oxygen species production, lipid hydroperoxide content, antioxidant enzyme activity and glutamate-cysteine ligase catalytic subunit gene expression. The employed models were wild type and transgenic (hemizygous and homozygous) zebrafish expressing the Odonthestes argentinensis growth hormone gene directed by the Cyprinus carpio beta-actin promoter. Higher growth parameters were observed in the hemizygous group. The homozygous group possessed higher oxygen consumption and reactive oxygen species production. Growth hormone transgenesis causes a decrease in glutamate-cysteine ligase catalytic subunit expression, an enzyme responsible for glutathione synthesis. Although the lipid hydroperoxide content was similar between groups, we demonstrate that growth hormone overexpression has the potential to generate oxidative stress in fishes.  相似文献   

15.
Growth hormone (GH) is an important regulator of immune functions in vertebrates, and it has been intensively reported a series of stimulatory actions of this hormone over on the immune system. Within aquaculture, overexpression of GH has been considered a promising alternative for promoting higher growth rates in organisms of commercial interest. Considering the various pleiotropic effects of GH, there are still few studies that aim to understand the consequences of the excess of GH on the physiological systems. In this context, our goal was to present the effects of the overexpression of GH on immune parameters using a model of zebrafish (Danio rerio) that overexpress this hormone. The results showed that GH transgenic zebrafish had 100% of mortality when immunosuppressed with dexamethasone, revealing a prior weakening of the immune system in this lineage. Morphometric analysis of thymus and head kidney revealed a reduction in the area of these structures in transgenic zebrafish. Moreover, the phenotypic expression of CD3 and CD4 thymocytes was also depreciated in transgenic zebrafish. Furthermore, a decrease was noted in the expression of genes RAG-1 (60%), IKAROS (50%), IL-1β (55%), CD4 (60%) and CD247 (40%), indicating that development parameters, of innate and acquired immunity, are being harmed. Based on these results, it can be concluded that the excess of GH impairs the immune functions in GH transgenic zebrafish, indicating that the maintenance of normal levels of this hormone is essential for the functioning of immunological activities.  相似文献   

16.
Japanese medaka (Oryzias latipes) is a freshwater (FW) teleost that is popular throughout the world for laboratory use. In this paper, we discuss the utility of Japanese medaka and related species for studying mechanisms of seawater (SW) adaptation. In addition to general advantages as an experimental animal such as their daily spawning activity, transparency of embryos, short generation time and established transgenic techniques, Japanese medaka have some adaptability to SW unlike the strictly stenohaline zebrafish (Danio rerio). Since other species in the genus Oryzias exhibit different degrees of adaptability to SW, comparative studies between Japanese medaka, where molecular-biological and genetic information is abundant, and other Oryzias species are expected to present varying approaches to solving the problems of SW adaptation. We introduce some examples of interspecies comparison for SW adaptabilities both in adult fish and in embryos. Oryzias species are good models for evolutionary, ecological and zoogeographical studies and a relationship between SW adaptability and geographic distribution has been suggested. Medaka fishes may thus deliver new insights into our understanding of how fish have expanded their distribution to a wide variety of osmotic environments.  相似文献   

17.
Zebrafish (Danio rerio) is a common research model in fish studies of toxicology, developmental biology, neurobiology and molecular genetics; it has been proposed as a possible model organism for nutrition and growth studies in fish. The advantages of working with zebrafish in these areas are their small size, short generation time (12–14 weeks) and their capacity to produce numerous eggs (100–200 eggs/clutch). Since a wide variety of molecular tools and information are available for genomic analysis, zebrafish has also been proposed as a model for nutritional genomic studies in fish. The detailed study of every species employed as a model organism is important because these species are used to generalize how several biological processes occur in related organisms, and contribute considerably toward improving our understanding of the mechanisms involved in nutrition and growth. The objective of this review is to show the relevant aspects of the nutrition and growth in zebrafish that support its utility as a model organism for nutritional genomics studies. We made a particular emphasis that gene expression and genetic variants in response to zebrafish nutrition will shed light on similar processes in aquacultured fish.  相似文献   

18.
Apoptosis (programmed cell death) is important in normal biological processes and in pathogenesis in vertebrates. This review focuses on some of the prominent features of apoptosis during fish development. Caspases and other apoptosis-regulating genes have been cloned from zebrafish (Danio rerio) and other fish species. Elucidation of in vivo functions of apoptosis is focused on development, morphogenesis and sex differentiation. In an attempt to elucidate cause and effect relationships between caspase and development, transgenic zebrafish overexpressing procaspase-3 were generated. Stress-induced apoptosis in zebrafish embryos can be monitored by whole mount TUNEL staining and caspase assay. Thus, zebrafish is a useful experimental model animal for investigation of apoptosis in vivo.  相似文献   

19.
20.
为了建立一种用于研究肌肉和心脏发育及其相关疾病的绿色荧光蛋白(enhanced green fluorescent protein,EGFP)转基因斑马鱼品系,本研究使用斑马鱼ttn.2基因编码区上游启动子序列和绿色荧光蛋白基因编码序列构建了重组表达载体,并将该载体和Tol2转座酶的加帽mRNA显微共注射入斑马鱼1-细胞期胚胎,通过荧光检测、遗传杂交筛选和分子鉴定等方法,成功建立了能稳定遗传的Tg(ttn.2:EGFP)转基因斑马鱼品系。荧光表达分析及原位杂交分析结果表明,绿色荧光信号在斑马鱼肌肉和心脏组织中特异表达模式与ttn.2基因的mRNA表达一致。通过反向PCR鉴定转基因表达载体在F1代斑马鱼品系中的随机整合位点,结果表明:No.33转基因品系的EGFP基因整合在斑马鱼的4号和11号染色体上,No.34转基因品系则整合在1号染色体上。该荧光转基因斑马鱼品系Tg(ttn.2:EGFP)的成功构建为肌肉和心脏发育以及相关疾病研究提供了一个新的理想实验模型。此外,绿色荧光强烈表达的斑马鱼品系还可以作为一种新的观赏鱼。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号