首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Achères wastewater treatment plant, located just downstream of Paris, discharges its effluents into the lower Seine River. The effluents contain large numbers of heterotrophic bacteria, organic matter, and ammonium and are a source of nitrifying bacteria. As a result, degradation of organic matter by heterotrophic bacteria and subsequent oxygen depletion occur immediately downstream of the effluent outlet, whereas nitrifying bacteria apparently need to build up a significant biomass before ammonium oxidation significantly depletes the oxygen. We quantified the potential total nitrifying activity and the potential activities of the ammonia- and nitrite-oxidizing communities along the Seine River. In the summer, the maximum nitrifying activity occurs in the upper freshwater estuary, approximately 200 km downstream of Achères. The quantities of nitrifying bacteria, based on amoA gene copy numbers, and of Nitrobacter organisms, based on 16S rRNA gene copy numbers, were correlated with the potential nitrifying activities. The species composition of ammonia-oxidizing bacteria was investigated at two sites: the Triel station just downstream from Achères (km 84) and the Seine freshwater estuary at the Duclair station (km 278). By means of PCR primers targeting the amoA gene, a gene library was created. Phylogenetic analysis revealed that the majority of the analyzed clones at both sites were affiliated with the genus NITROSOMONAS: The Nitrosomonas oligotropha- and Nitrosomonas urea-related clones represented nearly 81% of the community of ammonia-oxidizing bacteria at Triel and 60% at Duclair. Two other ammonia-oxidizing clusters of the beta subclass of the Proteobacteria, i.e., Nitrosomonas europaea- and Nitrosospira-like bacteria, were found in smaller numbers. The major change in the ammonia-oxidizing community between the two stations along the Seine River-upper estuary continuum was the replacement of the N. oligotropha- and N. urea-related bacteria by the Nitrosospira-affiliated bacteria. Although the diversities of the ammonia oxidizers appear to be similar for the two sites, only half of the restriction patterns are common to both sites, which could be explained by the differences in ammonium concentrations, which are much lower in the upper estuary than in the river at the effluent outlet. These results imply a significant immigration and/or selection of the ammonia-oxidizing bacterial population along the continuum of the Seine River from Paris to the estuary.  相似文献   

2.
3.
Like many functional groups or guilds of microorganisms, the group of ammonia-oxidizing bacteria (AOB) consists of a number of physiologically different species or lineages. These physiological differences suggest niche differentiation among these bacteria depending on the environmental conditions. Species of AOB might be adapted to different zones in the flooding gradient of a tidal marsh. This issue has been studied by sampling sediments from different sites and depths within a tidal freshwater marsh along the river Scheldt near the village of Appels in Belgium. Samples were taken in February, April, July and October 1998. Communities of AOB in the sediment were analysed on the basis of the 16S rRNA gene by application of polymerase chain reaction in combination with denaturing gradient gel electrophoresis (DGGE). In addition, moisture content and concentrations of ammonium and nitrate were determined as well as the potential ammonia-oxidizing activities. Six different DGGE bands belonging to the beta-subclass of the Proteobacteria were observed across the marsh. The community composition of AOB was determined by the elevation in the flooding gradient as well as by the sampling depth. The presence of plants was less important for the community composition of AOB. DGGE bands affiliated with the Nitrosospira lineage were mostly found in the upper part of the marsh and in the deeper layers of the sediment. Two of the three DGGE bands related to the Nitrosomonas oligotropha lineage were more broadly distributed over the marsh, but were predominantly found in the upper layers of the sediment. Members of the environmental Nitrosomonas lineage 5 were predominantly detected in the deeper layers in the lower parts of the marsh. Potential driving factors for niche differentiation are discussed.  相似文献   

4.
5.
Culture enrichments and culture-independent molecular methods were employed to identify and confirm the presence of novel ammonia-oxidizing bacteria (AOB) in nitrifying freshwater aquaria. Reactors were seeded with biomass from freshwater nitrifying systems and enriched for AOB under various conditions of ammonia concentration. Surveys of cloned rRNA genes from the enrichments revealed four major strains of AOB which were phylogenetically related to the Nitrosomonas marina cluster, the Nitrosospira cluster, or the Nitrosomonas europaea-Nitrosococcus mobilis cluster of the beta subdivision of the class Proteobacteria. Ammonia concentration in the reactors determined which AOB strain dominated in an enrichment. Oligonucleotide probes and PCR primer sets specific for the four AOB strains were developed and used to confirm the presence of the AOB strains in the enrichments. Enrichments of the AOB strains were added to newly established aquaria to determine their ability to accelerate the establishment of ammonia oxidation. Enrichments containing the Nitrosomonas marina-like AOB strain were most efficient at accelerating ammonia oxidation in newly established aquaria. Furthermore, if the Nitrosomonas marina-like AOB strain was present in the original enrichment, even one with other AOB, only the Nitrosomonas marina-like AOB strain was present in aquaria after nitrification was established. Nitrosomonas marina-like AOB were 2% or less of the cells detected by fluorescence in situ hybridization analysis in aquaria in which nitrification was well established.  相似文献   

6.
To determine whether the distribution of estuarine ammonia-oxidizing bacteria (AOB) was influenced by salinity, the community structure of betaproteobacterial ammonia oxidizers (AOB) was characterized along a salinity gradient in sediments of the Ythan estuary, on the east coast of Scotland, UK, by denaturant gradient gel electrophoresis (DGGE), cloning and sequencing of 16S rRNA gene fragments. Ammonia-oxidizing bacteria communities at sampling sites with strongest marine influence were dominated by Nitrosospira cluster 1-like sequences and those with strongest freshwater influence were dominated by Nitrosomonas oligotropha-like sequences. Nitrosomonas sp. Nm143 was the prevailing sequence type in communities at intermediate brackish sites. Diversity indices of AOB communities were similar at marine- and freshwater-influenced sites and did not indicate lower species diversity at intermediate brackish sites. The presence of sequences highly similar to the halophilic Nitrosomonas marina and the freshwater strain Nitrosomonas oligotropha at identical sampling sites indicates that AOB communities in the estuary are adapted to a range of salinities, while individual strains may be active at different salinities. Ammonia-oxidizing bacteria communities that were dominated by Nitrosospira cluster 1 sequence types, for which no cultured representative exists, were subjected to stable isotope probing (SIP) with 13C-HCO3-, to label the nucleic acids of active autotrophic nitrifiers. Analysis of 13C-associated 16S rRNA gene fragments, following CsCl density centrifugation, by cloning and DGGE indicated sequences highly similar to the AOB Nitrosomonas sp. Nm143 and Nitrosomonas cryotolerans and to the nitrite oxidizer Nitrospira marina. No sequence with similarity to the Nitrosospira cluster 1 clade was recovered during SIP analysis. The potential role of Nitrosospira cluster 1 in autotrophic ammonia oxidation therefore remains uncertain.  相似文献   

7.
Chloramination is often the disinfection regimen of choice for extended drinking water systems. However, this process is prone to instability due to the growth of nitrifying bacteria. This is the first study to use alternative approaches for rapid investigation of chloraminated drinking water system instability in which flow cytometric cell sorting of bacteria with intact membranes (membrane-intact fraction) (BacLight kit) or with active esterases (esterase-active fraction) (carboxyfluorescein diacetate) was combined with 16S rRNA gene-directed PCR and denaturing gradient gel electrophoresis (DGGE). No active bacteria were detected when water left the water treatment plant (WTP), but 12 km downstream the chloramine residual had diminished and the level of active bacteria in the bulk water had increased to more than 1 x 10(5) bacteria ml(-1). The bacterial diversity in the system was represented by six major DGGE bands for the membrane-intact fraction and 10 major DGGE bands for the esterase-active fraction. PCR targeting of the 16S rRNA gene of chemolithotrophic ammonia-oxidizing bacteria (AOB) and subsequent DGGE and DNA sequence analysis revealed the presence of an active Nitrosospira-related species and Nitrosomonas cryotolerans in the system, but no AOB were detected in the associated WTP. The abundance of active AOB was then determined by quantitative real-time PCR (qPCR) targeting the amoA gene; 3.43 x 10(3) active AOB ml(-1) were detected in the membrane-intact fraction, and 1.40 x 10(4) active AOB ml(-1) were detected in the esterase-active fraction. These values were several orders of magnitude greater than the 2.5 AOB ml(-1) detected using a routine liquid most-probable-number assay. Culture-independent techniques described here, in combination with existing chemical indicators, should allow the water industry to obtain more comprehensive data with which to make informed decisions regarding remedial action that may be required either prior to or during an instability event.  相似文献   

8.
Cryosectioned biofilm from three depths (0.5, 3.0 and 6.0 m) in a full-scale nitrifying trickling filter (NTF) were studied using fluorescence in situ hybridization (FISH). A large number of sections were used to determine how the biofilm thickness, structure and community composition varied with depth along the ammonium concentration gradient in the NTF, and how the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were distributed vertically within the biofilm. Both the biofilm thickness and relative biomass content of the biofilm decreased with depth, along with structural differences such as void size and surface roughness. Four AOB populations were found, with two Nitrosomonas oligotropha populations dominating at all depths. A smaller population of Nitrosomonas europaea was present only at 0.5 m, while a population of Nitrosomonas communis increased with depth. The two N. oligotropha populations showed different vertical distribution patterns within the biofilm, indicating different ecophysiologies even though they belong to the same AOB lineage. All NOB were identified as Nitrospira sp., and were generally more associated with the biofilm base than the surface-associated dominating AOB population. Additionally, a small population of anaerobic ammonia-oxidizers was found at 6.0 m, even though the biofilm was well aerated.  相似文献   

9.
The effects of growth type, including attached growth, suspended growth, and combined growth, on the characteristics of communities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were studied in three lab-scale Anaerobic/Anoxicm-Oxicn (AmOn) systems. These systems amplified activated sludge, biofilms, and a mixture of activated sludge and biofilm (AS-BF). Identical inocula were adopted to analyze the selective effects of mixed growth patterns on nitrifying bacteria. Fluctuations in the concentration of nitrifying bacteria over the 120 days of system operation were analyzed, as was the composition of nitrifying bacterial community in the stabilized stage. Analysis was conducted using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR. According to the DGGE patterns, the primary AOB lineages were Nitrosomonas europaea (six sequences), Nitrosomonas oligotropha (two sequences), and Nitrosospira (one sequence). The primary subclass of NOB community was Nitrospira, in which all identified sequences belonged to Nitrospira moscoviensis (14 sequences). Nitrobacter consisted of two lineages, namely Nitrobacter vulgaris (three sequences) and Nitrobacter alkalicus (two sequences). Under identical operating conditions, the composition of nitrifying bacterial communities in the AS-BF system demonstrated significant differences from those in the activated sludge system and those in the biofilm system. Major varieties included several new, dominant bacterial sequences in the AS-BF system, such as N. europaea and Nitrosospira and a higher concentration of AOB relative to the activated sludge system. However, no similar differences were discovered for the concentration of the NOB population. A kinetic study of nitrification demonstrated a higher maximum specific growth rate of mixed sludge and a lower half-saturation constant of mixed biofilm, indicating that the AS-BF system maintained relatively good nitrifying ability.  相似文献   

10.
The diversity and variation of total and active ammonia-oxidizing bacteria in a full-scale aerated submerged biofilm reactor for drinking water pretreatment were characterized by clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA and its gene during a whole year. Sequences obtained from clone libraries affiliated with the Nitrosomonas oligotropha lineage and the Nitrosomonas communis lineage. An uncultured subgroup of Nitrosomonas communis lineage was also detected. Seasonal variations in both total and active ammonia-oxidizing bacteria communities were observed in the DGGE profiles, but an RNA-based analysis reflected more obvious dynamic changes in ammonia-oxidizer community than a DNA-based approach. Statistical study based on canonical correspondence analysis showed that a community shift of active ammonia oxidizers was significantly influenced by temperature and pH, but no significant correlation was found between environmental variables and total ammonia-oxidizer community shift.  相似文献   

11.
Chloramination is often the disinfection regimen of choice for extended drinking water systems. However, this process is prone to instability due to the growth of nitrifying bacteria. This is the first study to use alternative approaches for rapid investigation of chloraminated drinking water system instability in which flow cytometric cell sorting of bacteria with intact membranes (membrane-intact fraction) (BacLight kit) or with active esterases (esterase-active fraction) (carboxyfluorescein diacetate) was combined with 16S rRNA gene-directed PCR and denaturing gradient gel electrophoresis (DGGE). No active bacteria were detected when water left the water treatment plant (WTP), but 12 km downstream the chloramine residual had diminished and the level of active bacteria in the bulk water had increased to more than 1 × 105 bacteria ml−1. The bacterial diversity in the system was represented by six major DGGE bands for the membrane-intact fraction and 10 major DGGE bands for the esterase-active fraction. PCR targeting of the 16S rRNA gene of chemolithotrophic ammonia-oxidizing bacteria (AOB) and subsequent DGGE and DNA sequence analysis revealed the presence of an active Nitrosospira-related species and Nitrosomonas cryotolerans in the system, but no AOB were detected in the associated WTP. The abundance of active AOB was then determined by quantitative real-time PCR (qPCR) targeting the amoA gene; 3.43 × 103 active AOB ml−1 were detected in the membrane-intact fraction, and 1.40 × 104 active AOB ml−1 were detected in the esterase-active fraction. These values were several orders of magnitude greater than the 2.5 AOB ml−1 detected using a routine liquid most-probable-number assay. Culture-independent techniques described here, in combination with existing chemical indicators, should allow the water industry to obtain more comprehensive data with which to make informed decisions regarding remedial action that may be required either prior to or during an instability event.  相似文献   

12.
The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of the reactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity.  相似文献   

13.
In this study, a lab-scale partial nitrifying sequencing batch reactor (SBR) was developed to investigate partial nitrification at ambient temperature (16–22 °C). Techniques of denaturing gradient gel electrophoresis (DGGE), cloning, and fluorescence in situ hybridization (FISH) were utilized simultaneously to study microbial population dynamics. Partial nitrification was effectively achieved in response to shifts of influent ammonium concentrations. DGGE results showed that higher ammonia concentration referred to lower ammonia-oxidizing bacteria (AOB) diversity in the SBR. Phylogenetic analysis revealed that all the predominant AOB was affiliated with Nitrosomonas genus. FISH analysis illustrated AOB was the predominant nitrifying bacteria of microbial compositions when SBR achieved partial nitrification (PN) at ambient temperature.  相似文献   

14.
Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus NITROSPIRA: The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% +/- 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% +/- 0.28% of the biosludge population in the municipal WWTP and 0.37% +/- 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs.  相似文献   

15.
Zeng T  Li D  Zhang J 《Current microbiology》2011,63(6):543-550
A lab-scale partial nitrifying sequencing batch biofilm reactor was a successful start-up. Denaturing gradient gel electrophoresis (DGGE) was used to investigate the bacterial community dynamics in three periods together with inocula sludge at ambient temperature. The DGGE profiles of bacteria and Shannon–Wiener index (H′) results showed that high free ammonia (FA) concentration referred to lower diversity in the bioreactor system. Cluster analysis indicated that microorganism in period III was similar with inocula sludge and was different from that in periods I and II. Similar results also appeared in ammonia-oxidizing bacteria (AOB) community structure and nitrite-oxidizing bacteria (NOB) community structure, and at least four AOB species and two NOB species were present in period III, respectively. Phylogenetic analysis of amoA gene sequences showed that Nitrosomonas eutropha cluster was predominant in all the three periods. With lower ammonium loads, three new operational taxonomic units formed and consisted Nitrosomonas sp. Cluster. This article demonstrated that microbial community, AOB, and NOB diversity were related with FA concentration closely at ambient temperature.  相似文献   

16.
AIMS: To study the effects of different solids retention time (SRT) on the nitrification activity and community composition of ammonia-oxidizing bacteria (AOB) in two full-scale activated sludge processes during a 5-month period. METHODS AND RESULTS: The AOB community composition was analysed using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE), and the identified populations were enumerated by quantitative FISH. Potential nitrification rates were determined in batch tests and the in situ rates were calculated from mass balances of nitrogen in the plants. Increased SRT reduced the nitrification activity, but neither the number per mixed liquor suspended solids nor community composition of AOB were affected. Two dominant AOB populations related to Nitrosomonas europaea and Nitrosomonas oligotropha were identified by FISH, whereas only the latter could be detected by DGGE. CONCLUSIONS: The effect of a longer SRT on the activity was probably because of physiological changes in the AOB community rather than a change in community composition. SIGNIFICANCE AND IMPACT OF THE STUDY: Physiological alterations of a stable AOB community are possible and may stabilize activated sludge processes. The commonly used FISH probes designed to target all beta-proteobacterial AOB does not detect certain Nitrosomonas oligotropha populations, leading to an underestimation of AOB if a wider set of probes is not used.  相似文献   

17.
Population dynamics of ammonia-oxidizing bacteria (AOB) in a full-scale aerated submerged biofilm reactor for micropolluted raw water pretreatment was investigated using molecular techniques for a period of 1 year. The ammonia monooxygenase (amoA) gene fragments were amplified from DNA and RNA extracts of biofilm samples. Denaturing gradient gel electrophoresis (DGGE) profile based on the amoA messenger RNA approach exhibited a more variable pattern of temporal dynamics of AOB communities than the DNA-derived approach during the study. Phylogenetic analysis of excised DGGE bands revealed three AOB groups affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage, and an unknown Nitrosomonas group. The population size of betaproteobacterial AOB, quantified with 16S ribosomal RNA gene real-time polymerase chain reaction assay, ranged from 6.63 × 105 to 2.67 × 109 cells per gram of dry biofilm and corresponded to 0.23–1.8% of the total bacterial fraction. Quantitative results of amoA gene of the three specific AOB groups revealed changes in competitive dominance between AOB of the N. oligotropha lineage and N. communis lineage. Water temperature is shown to have major influence on AOB population size in the reactor by the statistic analysis, and a positive correlation between AOB cell numbers and ammonia removal efficiency is suggested (r = 0.628, P < 0.05).  相似文献   

18.
This study examined the hypothesis that different inorganic carbon (IC) conditions enrich different ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) populations by operating two laboratory-scale continuous-flow bioreactors fed with 15 and 100 mg IC/L, respectively. During this study, both bioreactors maintained satisfactory nitrification performance and stably oxidized 250 mg?N/L of influent ammonium without nitrite accumulation. Based on results of cloning/sequencing and terminal restriction fragment length polymorphism targeting on the ammonia monooxygenase subunit A (amoA) gene, Nitrosomonas nitrosa lineage was identified as the dominant AOB population in the high-IC bioreactor, while Nitrosomonas europaea and Nitrosomonas nitrosa lineage AOB were dominant in the low-IC bioreactor. Results of real-time polymerase chain reactions for Nitrobacter and Nitrospira 16S rRNA genes indicated that Nitrospira was the predominant NOB population in the high-IC bioreactor, while Nitrobacter was the dominant NOB in the low-IC bioreactor. Furthermore, batch experiment results suggest that N. europaea and Nitrobacter populations are proliferated in the low-IC bioreactor due to their higher rates under low IC conditions despite the fact that these two populations have been identified as weak competitors, compared with N. nitrosa and Nitrospira, under low ammonium/nitrite environments. This study revealed that in addition to ammonium/nitrite concentrations, limited IC conditions may also be important in selecting dominant AOB/NOB communities of nitrifying bioreactors.  相似文献   

19.
Zero-discharge marine aquaculture systems are an environmentally friendly alternative to conventional aquaculture. In these systems, water is purified and recycled via microbial biofilters. Here, quantitative data on nitrifier community structure of a trickling filter biofilm associated with a recirculating marine aquaculture system are presented. Repeated rounds of the full-cycle rRNA approach were necessary to optimize DNA extraction and the probe set for FISH to obtain a reliable and comprehensive picture of the ammonia-oxidizing community. Analysis of the ammonia monooxygenase gene (amoA) confirmed the results. The most abundant ammonia-oxidizing bacteria (AOB) were members of the Nitrosomonas sp. Nm143-lineage (6.7% of the bacterial biovolume), followed by Nitrosomonas marina-like AOB (2.2% of the bacterial biovolume). Both were outnumbered by nitrite-oxidizing bacteria of the Nitrospira marina-lineage (15.7% of the bacterial biovolume). Although more than eight other nitrifying populations were detected, including Crenarchaeota closely related to the ammonia-oxidizer 'Nitrosopumilus maritimus', their collective abundance was below 1% of the total biofilm volume; their contribution to nitrification in the biofilter is therefore likely to be negligible.  相似文献   

20.
Molecular and cultivation techniques were used to characterize the bacterial communities of biobead reactor biofilms in a sewage treatment plant to which an Aerated Up-Flow Biobead process was applied. With this biobead process, the monthly average values of various chemical parameters in the effluent were generally kept under the regulation limits of the effluent quality of the sewage treatment plant during the operation period. Most probable number (MPN) analysis revealed that the population of denitrifying bacteria was abundant in the biobead #1 reactor, denitrifying and nitrifying bacteria coexisted in the biobead #2 reactor, and nitrifying bacteria prevailed over denitrifying bacteria in the biobead #3 reactor. The results of the MPN test suggested that the biobead #2 reactor was a transition zone leading to acclimated nitrifying biofilms in the biobead #3 reactor. Phylogenetic analysis of 16S rDNA sequences cloned from biofilms showed that the biobead #1 reactor, which received a high organic loading rate, had much diverse microorganisms, whereas the biobead #2 and #3 reactors were dominated by the members of Proteobacteria. DGGE analysis with the ammonia monooxygenase (amoA) gene supported the observation from the MPN test that the biofilms of September were fully developed and specialized for nitrification in the biobead reactor #3. All of the DNA sequences of the amoA DGGE bands were very similar to the sequence of the amoA gene of Nitrosomonas species, the presence of which is typical in the biological aerated filters. The results of this study showed that organic and inorganic nutrients were efficiently removed by both denitrifying microbial populations in the anaerobic tank and heterotrophic and nitrifying bacterial biofilms well-formed in the three functional biobead reactors in the Aerated Up-Flow Biobead process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号