首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The three subtypes of peroxisome proliferator activated-receptors (PPARalpha, delta and gamma) control the storage and metabolism of fatty acids. Treatment of rats with the PPARalpha ligand ciprofibrate increases serum gastrin concentrations, and several lines of evidence suggest that non-amidated gastrins act as growth factors for the colonic mucosa. The aim of the present study was to investigate the expression of PPARs and the effect of PPAR ligands on gastrin production and cell proliferation in human colorectal carcinoma (CRC) cell lines. mRNAs for all three PPAR subtypes were detected by PCR in all CRC cell lines tested. The concentrations of progastrin, but not of glycine-extended or amidated gastrin, measured by radioimmunoassay in LIM 1899 conditioned media and cell extracts were significantly increased by treatment with the PPARalpha ligand clofibrate. Similar increases in progastrin were seen following treatment with the PPARalpha ligands ciprofibrate and fenofibrate, but not with bezafibrate, gemfibrozil or Wy 14643. The PPARgamma agonist rosiglitazone had no significant effect on progastrin production. The PPARalpha ligand clofibrate also stimulated proliferation of the LIM 1899 cell line. We conclude that some PPARalpha ligands increase progastrin production by the human CRC cell line LIM 1899, and that clofibrate increases proliferation of LIM 1899 cells. These studies have revealed a relationship between PPARs and gastrin, two regulatory molecules implicated in the pathogenesis of CRC.  相似文献   

5.
6.
PPAR: a mediator of peroxisome proliferator action   总被引:6,自引:0,他引:6  
Stephen Green 《Mutation research》1995,333(1-2):101-109
  相似文献   

7.
PPAR expression and function during vertebrate development   总被引:11,自引:0,他引:11  
The peroxisome proliferator activated receptors (PPARs) are ligand activated receptors which belong to the nuclear hormone receptor family. As with other members of this superfamily, it is thought that the ability of PPAR to bind to a ligand was acquired during metazoan evolution. Three different PPAR isotypes (PPARalpha, PPARbeta, also called 6, and PPARgamma) have been identified in various species. Upon binding to an activator, these receptors stimulate the expression of target genes implicated in important metabolic pathways. The present article is a review of PPAR expression and involvement in some aspects of Xenopus laevis and rodent embryonic development. PPARalpha and beta are ubiquitously expressed in Xenopus early embryos but become more tissue restricted later in development. In rodents, PPARalpha, PPARbeta and PPARgamma show specific time- and tissue-dependent patterns of expression during fetal development and in the adult animals. PPARs are implicated in several aspects of tissue differentiation and rodent development, such as differentiation of the adipose tissue, brain, placenta and skin. Particular attention is given to studies undertaken by us and others on the implication of PPARalpha and beta in rodent epidermal differentiation.  相似文献   

8.
9.
10.
Peroxisome proliferator‐activated receptors (PPARs) mediate the effects of various ligands, known as peroxisome proliferators, a heterogeneous class of compounds including industrial chemicals, pharmaceuticals, and biomolecules such as fatty acids and eicosanoids. Among peroxisome proliferators, fibrate derivatives are considered specific ligands for PPARα, whereas eicosanoids, such as PGJ2, for PPARγ. The study aimed to clarify the relation between PPARs and apoptosis or proliferation on the same type of cells, using clofibrate as specific ligand of PPARα and PGJ2 as specific ligand of PPARγ. The cells used were human hepatocarcinoma HepG2 cells. The results showed that PPARα protein content increased in HepG2 cells treated with clofibrate, causing apoptosis in a time‐ and concentration‐dependent way, as evidenced by the citofluorimetric assay and determination of BAD, myc and protein phosphatase 2A protein content. It also emerged that PPARγ increased in the same cells when treated with a specific ligand of this PPAR; in this case the increase of PPARγ did not cause an increase of apoptosis, but a time‐ and concentration‐dependent inhibition of cell proliferation, evidenced by decreased cell numbers and increased number of cells in the G0/G1 phase of the cycle. It may be concluded that PPARα is chiefly related to apoptosis and PPARγ to cell proliferation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Recent evidence indicates that both leptin and eicosapentaenoic acids (EPA) improve insulin sensitivity. In the present study, we examined the effect of EPA on endogenous leptin expression in 3T3-L1 adipocytes to clarify whether the EPA's effect is exerted through leptin expression. EPA caused a time- and dose-dependent increase of leptin mRNA levels in 3T3-L1 adipocytes. Leptin mRNA expression was significantly increased up to 309.4 +/- 17.0% of the control by 24 h (P < 0.01; n = 6). Leptin secretion was also significantly increased up to 193.3 +/- 12.1% of the control by 24 h (P < 0.01; n = 6). EPA is a ligand for peroxisome proliferator-activated receptors (PPARs) with the highest affinity to PPARalpha. We examined the effect on leptin expression of clofibrate, a ligand for PPARalpha, bezafibrate, for PPARbeta, or troglitazone, for PPARgamma, to clarify whether these ligands for PPARs could mimic EPA-induced stimulation of leptin expression. Neither clofibrate nor bezafibrate affected leptin mRNA expression, whereas troglitazone significantly suppressed leptin mRNA expression. On the other hand, inhibition by 6-diazo-5-oxo-l-norleucine of the rate-limiting enzyme in hexosamine biosynthesis blunted EPA-induced stimulation of leptin mRNA expression and its secretion. These data suggest that EPA up-regulates leptin gene expression and its secretion probably through a hexosamine biosynthetic pathway.  相似文献   

12.
13.
As natural peroxisome proliferator-activated receptor-alpha (PPARalpha) ligands, high levels of fatty acids and glucose could lead to hyperactivation of PPARalpha, like that seen in diabetes. Important diabetes research goals are to uncover new metabolic or signaling pathways involved in hyperglycemic cellular injury and to develop therapeutics for preventing or reversing this injury. Consequently, 1040 putative antidiabetic agents were screened for their ability to 1) affect PPARalpha lipid binding, 2) directly bind PPARalpha, and 3) alter PPARalpha transactivation in the presence of high glucose. A high-throughput fluorescent binding assay was developed to examine each compound's ability to restore fatty acyl-CoA binding to PPARalpha in the presence of high glucose concentrations. Approximately 1% of the compounds restored acyl-CoA binding by 60% or more. These compounds directly interacted with PPARalpha with high affinity (nM K(d)s), validating the primary screen. Furthermore, these compounds altered PPARalpha transactivation, and 1 strongly reversed the hyperactivation of PPARalpha found in the presence of clofibrate and high glucose levels.  相似文献   

14.
Expression of the rat peroxisomal 3-ketoacyl-CoA thiolase gene B is induced by peroxisome proliferators. Although a sequence element like a peroxisome proliferator-activated receptor (PPAR)-binding site is located in the promoter region of this gene, we previously found that this element is competent for the activation by hepatocyte nuclear factor-4, but not functional with PPARalpha. We describe here a new peroxisome proliferator-response element located in the intron 3 (+1422/+1434) that binds in vitro the PPARalpha/retinoid X receptor alpha heterodimer and confers the induction by PPARalpha in transfection assays. We propose a model of regulation of the rat thiolase B gene involving those elements in the promoter and intron 3.  相似文献   

15.
Fatty acids are generally considered as agonists for peroxisome proliferator-activated receptors (PPARs). Fatty acids have been shown to bind to and transactivate PPARs; it is not known whether fatty acids act as generalized agonists for PPARs in different cell types, and thus, stimulate the expression of PPAR-regulated target genes. Here, we investigated the potency of unsaturated fatty acids on transactivation of PPRE, DNA-binding activity of PPARs, and the expression of a PPAR-regulated gene product, CD36. Docosahexaenoic acid (DHA) suppressed the basal and PPAR agonist-induced transactivation of PPRE, and DNA binding of PPARs in colon tumor cells (HCT116). The suppression of PPAR transactivation by DHA leads to reduced expression of CD36 in HCT116 cells and human monocytic cells (THP-1) as determined by promoter reporter gene assay and flow cytometric analysis. Our results demonstrate that DHA and other unsaturated fatty acids act as antagonists instead of agonists for transactivation of PPRE and PPAR-regulated gene expression in the cell lines tested. These results suggest that PPAR-mediated gene expression and cellular responses can be dynamically modulated by different types of dietary fatty acids consumed.  相似文献   

16.
17.
Neuronal development and apoptosis critically depend on the transformation of extracellular signals to intracellular actions resulting in cytoskeletal rearrangements. Ena/VASP (enabled/vasodilator-stimulated phosphoprotein) proteins play an important role in actin and filament dynamics, whereas members of the semaphorin protein family are guidance signals in embryo- and organogenesis. Here, we report the identification of two novel transmembranous human and murine semaphorins, (HSA)SEMA6A-1 and (MMU)Sema6A-1. These semaphorin 6 variants directly link the Ena/VASP and the semaphorin protein family, since SEMA6A-1/Sema6A-1 is capable of a selective binding to the protein EVL (Ena/VASP-like protein). EVL is the third member of the Ena/VASP family of proteins that was identified sharing the same structural features as Mena (mammalian enabled) and VASP, although its functionality seems to be different from that of the other members. Here we demonstrate that SEMA6A-1/Sema6A-1 is colocalized with EVL via its zyxin-like carboxyl-terminal domain that contains a modified binding motif, which further stresses the existence of functional differences between EVL and Mena/VASP. In addition these findings suggest a completely new role for transmembranous semaphorins such as SEMA6A-1/Sema6A-1 in retrograde signaling.  相似文献   

18.
To characterize the specificity of synthetic compounds for peroxisome proliferator-activated receptors (PPARs), three stable cell lines expressing the ligand binding domain (LBD) of human PPARalpha, PPARdelta, or PPARgamma fused to the yeast GAL4 DNA binding domain (DBD) were developed. These reporter cell lines were generated by a two-step transfection procedure. First, a stable cell line, HG5LN, expressing the reporter gene was developed. These cells were then transfected with the different receptor genes. With the help of the three PPAR reporter cell lines, we assessed the selectivity and activity of PPAR agonists GW7647, WY-14-643, L-165041, GW501516, BRL49653, ciglitazone, and pioglitazone. GW7647, L-165041, and BRL49653 were the most potent and selective agonists for hPPARalpha, hPPARdelta, and hPPARgamma, respectively. Two PPAR antagonists, GW9662 and BADGE, were also tested. GW9662 was a selective PPARgamma antagonist, whereas BADGE was a low-affinity PPAR ligand. Furthermore, GW9662 was a full antagonist on PPARgamma and PPARdelta, whereas it showed partial agonism on PPARalpha. We conclude that our stable models allow specific and sensitive measurement of PPAR ligand activities and are a high-throughput, cell-based screening tool for identifying and characterizing PPAR ligands.  相似文献   

19.
Qu X  Wei H  Zhai Y  Que H  Chen Q  Tang F  Wu Y  Xing G  Zhu Y  Liu S  Fan M  He F 《The Journal of biological chemistry》2002,277(38):35574-35585
We cloned two novel human transmembrane semaphorins, (HSA)SEMA6C and (HSA)SEMA6D, that belong to the class VI subgroup of the semaphorin family. The genes for SEMA6C and SEMA6D are mapped on chromosome 1q12-21.1 and 15q21.1, respectively. Among the adult tissues, SEMA6C is expressed only in skeletal muscle, whereas SEMA6D is expressed abundantly in kidney, brain, and placenta and moderately in the heart and skeletal muscles. During murine development, neither SEMA6C nor SEMA6D was expressed in embryonic day 10.5 (E10.5) embryos, but both were highly expressed in the areas of the lateral ventricle, the striatum, the wall of the midbrain, the pons/midbrain junction, and the choroid plexus of E13 embryos. Were neurons, neither axons nor astrocytes, highly expressed both semaphorins. Three isoforms of SEMA6C and five isoforms of SEMA6D derived from alternative splicing were identified, and their expression was regulated in a tissue- and development-dependent manner. Deletion analysis indicated that a sema domain and a PSI domain are integrally necessary for correct post-translation modification and subcellular localization. The extracellular domain of SEMA6C inhibited axonal extension of nerve growth factor-differentiated PC12 cells and induced the growth cone collapse of chicken dorsal root ganglion, rat hippocampal neurons, and rat cortical neurons in a dose-responsive manner. SEMA6D acted like SEMA6C except it had no significant effect on the growth cones of rat cortical neurons.  相似文献   

20.
The high-affinity IgE receptor Fc epsilon RI is expressed on the cell surface of mast cells and basophils, and plays a central role in IgE-mediated inflammatory reactions. Recently, peroxisome proliferator-activated receptors (PPARs) have been implicated in the anti-inflammatory response. To investigate a possible role for PPAR in human basophils, the effect of PPAR ligands on Fc epsilon RI expression in human basophilic KU812 cells was studied. The PPARalpha ligand, leukotriene B(4), did not affect the cell surface expression of Fc epsilon RI. However, prostaglandin (PG) A(1) and 15-deoxy-Delta(12,14) PGJ(2) (15d-PGJ(2)), which are PPARbeta and gamma ligands, respectively, were both able to decrease Fc epsilon RI expression. Treatment with PGA(1) or 15d-PGJ(2) separately also reduced histamine release from KU812 cells in response to cross-linkage of Fc epsilon RI. In addition, RT-PCR analysis showed that KU812 cells expressed the mRNA for PPARalpha, beta, and gamma, indicating that PPARbeta or gamma may negatively regulate the cell activation via Fc epsilon RI. Cells treated with 15d-PGJ(2) expressed lower levels of Fc epsilon RI alpha and gamma mRNA, and PGA(1) treatment decreased the level of Fc epsilon RI gamma mRNA. These results suggest that the suppression of Fc epsilon RI expression by PPARs may be due to the down-regulation of Fc epsilon RI alpha or gamma mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号