首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary structure of the RAD52 gene in Saccharomyces cerevisiae.   总被引:26,自引:9,他引:17       下载免费PDF全文
  相似文献   

2.
Summary The DEL1 mutator in Saccharomyces cerevisiae leads to the formation of deletions adjacent to itself (Liebman et al. 1979). Here we show that the frequency of these DEL1-promoted deletions is not altered by the presence of the recombination-deficient mutation, rad52-1. This indicates that generalized recombination is not required for the formation of deletions in DEL1 yeast strains.  相似文献   

3.
4.
Homothallic Saccharomyces cerevisiae strains switch their mating-type in a specific gene conversion event induced by a DNA double strand break made by the HO endonuclease. The RAD52 group genes control recombinational repair of DNA double strand breaks, and we examined their role in native homothallic mating-type switching. Surprisingly, we found that the Rad54 protein was important but not essential for mating-type switching under natural conditions. As an upper limit, we estimate that 29% of the rad54 spore clones can successfully switch their mating-type. The RAD55 and RAD57 gene products were even less important, but their presence increased the efficiency of the process. In contrast, the RAD51 and RAD52 genes are essential for homothallic mating-type switching. We propose that mating-type switching in RAD54 mutants occurs stochastically with a low probability, possibly reflecting different states of chromosomal structure.  相似文献   

5.
Previous genetic evidence led to the conclusion that proteinase B of yeast was not involved in the function of chitin synthetase 1 (Chs1), based on the demonstration of normal septum formation, cell division and chitin deposition in mutants devoid of the proteinase (Zubenko, G.S., Mitchell, A.P., and Jones, E.W. (1979) Proc. Natl. Acad. Sci. USA 76, 2395-2399). Later, however, it was found that the essential enzyme for septum formation is chitin synthetase 2, whereas Chs1 acts as an auxiliary enzyme, whose absence results in daughter cell lysis under acidic conditions (Cabib, E., Sburlati, A., Bowers, B. and Silverman, S.J. (1989) J. Cell Biol. 108, 1665-1672). By using the lytic behavior as a criterion, we have now found that prb1 strains are not defective in Chs1 function. Certain strains contain a recessive suppressor of lysis which could mask the Chs1 defect. However, appropriate crosses and transformation experiments showed that the prb1 mutants do not harbor the suppressor. It may now be concluded with confidence that proteinase B is not required for chitin synthetase 1 function.  相似文献   

6.
Disruption of RAD1, a gene controlling excision repair in the yeast Saccharomyces cerevisiae, increased the frequency of spontaneous forward mutation in a plasmid-borne copy of the SUP4-o gene. To characterize this effect in detail, a collection of 249 SUP4-o mutations arising spontaneously in the rad1 strain was analyzed by DNA sequencing. The resulting mutational spectrum was compared with that derived from an examination of 322 spontaneous SUP4-o mutations selected in an isogenic wild-type (RAD1) strain. This comparison revealed that the rad1 mutator phenotype was associated with increases in the frequencies of single-base-pair substitution, single-base-pair deletion, and insertion of the yeast retrotransposon Ty. In the rad1 strain, the relative fractions of these events and their distributions within SUP4-o exhibited features similar to those for spontaneous mutagenesis in the isogenic RAD1 background. The increase in the frequency of Ty insertion argues that Ty transposition can be activated by unrepaired spontaneous DNA damage, which normally would be removed by excision repair. We discuss the possibilities that either translesion synthesis, a reduced fidelity of DNA replication, or a deficiency in mismatch correction might be responsible for the majority of single-base-pair events in the rad1 strain.  相似文献   

7.
《The Journal of cell biology》1996,135(5):1323-1339
The gene for a microtubule-associated protein (MAP), termed MHP1 (MAP- Homologous Protein 1), was isolated from Saccharomyces cerevisiae by expression cloning using antibodies specific for the Drosophila 205K MAP. MHP1 encodes an essential protein of 1,398 amino acids that contains near its COOH-terminal end a sequence homologous to the microtubule-binding domain of MAP2, MAP4, and tau. While total disruptions are lethal, NH2-terminal deletion mutations of MHP1 are viable, and the expression of the COOH-terminal two-thirds of the protein is sufficient for vegetative growth. Nonviable deletion- disruption mutations of MHP1 can be partially complemented by the expression of the Drosophila 205K MAP. Mhp1p binds to microtubules in vitro, and it is the COOH-terminal region containing the tau-homologous motif that mediates microtubule binding. Antibodies directed against a COOH-terminal peptide of Mhp1p decorate cytoplasmic microtubules and mitotic spindles as revealed by immunofluorescence microscopy. The overexpression of an NH2-terminal deletion mutation of MHP1 results in an accumulation of large-budded cells with short spindles and disturbed nuclear migration. In asynchronously growing cells that overexpress MHP1 from a multicopy plasmid, the length and number of cytoplasmic microtubules is increased and the proportion of mitotic cells is decreased, while haploid cells in which the expression of MHP1 has been silenced exhibit few microtubules. These results suggest that MHP1 is essential for the formation and/or stabilization of microtubules.  相似文献   

8.
Kozhina TN  Kozhin SA  Korolev VG 《Genetika》2011,47(5):610-614
The earlier identified gene RAD31 was mapped on the right arm of chromosome II in the region of gene MEC1 localization. Epistatic analysis demonstrated that the rad31 mutation is an allele of the MEC1 gene, which allows further designation of the rad31 mutation as mec1-212. Mutation mec1-212, similar to deletion alleles of this gene, causes sensitivity to hydroxyurea, disturbs the check-point function, and suppresses UV-induced mutagenesis. However, this mutation significantly increases the frequency of spontaneous canavanine-resistance mutations induced by disturbances in correcting errors of DNA replication and repair, which distinguishes it from all identified alleles of gene MEC1.  相似文献   

9.
The biogenesis of transfer RNA is a process that requires many different factors. In this study, we describe a genetic screen aimed to identify gene products participating in this process. By screening for mutations lethal in combination with a sup61-T47:2C allele, coding for a mutant form of, the nonessential TAN1 gene was identified. We show that the TAN1 gene product is required for formation of the modified nucleoside N(4)-acetylcytidine (ac(4)C) in tRNA. In Saccharomyces cerevisiae, ac(4)C is present at position 12 in tRNAs specific for leucine and serine as well as in 18S ribosomal RNA. Analysis of RNA isolated from a tan1-null mutant revealed that ac(4)C was absent in tRNA, but not rRNA. Although no tRNA acetyltransferase activity by a GST-Tan1 fusion protein was detected, a gel-shift assay revealed that Tan1p binds tRNA, suggesting a direct role in synthesis of ac(4)C(12). The absence of the TAN1 gene in the sup61-T47:2C mutant caused a decreased level of mature, indicating that ac(4)C(12) and/or Tan1p is important for tRNA stability.  相似文献   

10.
HO endonuclease-induced double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae can be repaired by the process of gap repair or, alternatively, by single-strand annealing if the site of the break is flanked by directly repeated homologous sequences. We have shown previously (J. Fishman-Lobell and J. E. Haber, Science 258:480-484, 1992) that during the repair of an HO-induced DSB, the excision repair gene RAD1 is needed to remove regions of nonhomology from the DSB ends. In this report, we present evidence that among nine genes involved in nucleotide excision repair, only RAD1 and RAD10 are required for removal of nonhomologous sequences from the DSB ends. rad1 delta and rad10 delta mutants displayed a 20-fold reduction in the ability to execute both gap repair and single-strand annealing pathways of HO-induced recombination. Mutations in RAD2, RAD3, and RAD14 reduced HO-induced recombination by about twofold. We also show that RAD7 and RAD16, which are required to remove UV photodamage from the silent HML, locus, are not required for MAT switching with HML or HMR as a donor. Our results provide a molecular basis for understanding the role of yeast nucleotide excision repair gene and their human homologs in DSB-induced recombination and repair.  相似文献   

11.
12.
13.
In eukaryotes, the posttranslational conjugation of ubiquitin to various cellular proteins marks them for degradation. Interestingly, several proteins have been reported to contain ubiquitin-like (ub-like) domains that are in fact specified by the DNA coding sequences of the proteins. The biological role of the ub-like domain in these proteins is not known; however, it has been proposed that this domain functions as a degradation signal rendering the proteins unstable. Here, we report that the product of the Saccharomyces cerevisiae RAD23 gene, which is involved in excision repair of UV-damaged DNA, bears a ub-like domain at its amino terminus. This finding has presented an opportunity to define the functional significance of this domain. We show that deletion of the ub-like domain impairs the DNA repair function of RAD23 and that this domain can be functionally substituted by the authentic ubiquitin sequence. Surprisingly, RAD23 is highly stable, and the studies reported herein indicate that its ub-like domain does not mediate protein degradation. Thus, in RAD23 at least, the ub-like domain affects protein function in a nonproteolytic manner.  相似文献   

14.
15.
16.
D R Higgins  S Prakash  P Reynolds  L Prakash 《Gene》1983,26(2-3):119-126
  相似文献   

17.
The RAD52 and RAD54 genes in the yeast Saccharomyces cerevisiae are involved in both DNA repair and DNA recombination. RAD54 has recently been shown to be inducible by X-rays, while RAD52 is not. To further investigate the regulation of these genes, we constructed gene fusions using 5' regions upstream of the RAD52 and RAD54 genes and a 3'-terminal fragment of the Escherichia coli beta-galactosidase gene. Yeast transformants with either an integrated or an autonomously replicating plasmid containing these fusions expressed beta-galactosidase activity constitutively. In addition, the RAD54 gene fusion was inducible in both haploid and diploid cells in response to the DNA-damaging agents X-rays, UV light, and methyl methanesulfonate, but not in response to heat shock. The RAD52-lacZ gene fusion showed little or no induction in response to X-ray or UV radiation nor methyl methanesulfonate. Typical induction levels for RAD54 in cells exposed to such agents were from 3- to 12-fold, in good agreement with previous mRNA analyses. When MATa cells were arrested in G1 with alpha-factor, RAD54 was still inducible after DNA damage, indicating that the observed induction is independent of the cell cycle. Using a yeast vector containing the EcoRI structural gene fused to the GAL1 promoter, we showed that double-strand breaks alone are sufficient in vivo for induction of RAD54.  相似文献   

18.
Exposure to ionizing radiation results in a variety of genome rearrangements that have been linked to tumor formation. Many of these rearrangements are thought to arise from the repair of double-strand breaks (DSBs) by several mechanisms, including homologous recombination (HR) between repetitive sequences dispersed throughout the genome. Doses of radiation sufficient to create DSBs in or near multiple repetitive elements simultaneously could initiate single-strand annealing (SSA), a highly efficient, though mutagenic, mode of DSB repair. We have investigated the genetic control of the formation of translocations that occur spontaneously and those that form after the generation of DSBs adjacent to homologous sequences on two, non-homologous chromosomes in Saccharomyces cerevisiae. We found that mutations in a variety of DNA repair genes have distinct effects on break-stimulated translocation. Furthermore, the genetic requirements for repair using 300bp and 60bp recombination substrates were different, suggesting that the SSA apparatus may be altered in response to changing substrate lengths. Notably, RAD59 was found to play a particularly significant role in recombination between the short substrates that was partially independent of that of RAD52. The high frequency of these events suggests that SSA may be an important mechanism of genome rearrangement following acute radiation exposure.  相似文献   

19.
20.
Replication origins have been mapped to positions that coincide, within experimental error (several hundred base pairs), with ARS elements. To determine whether the DNA sequences required for ARS function on plasmids are required for chromosomal origin function, the chromosomal copy of ARS306 was deleted and the chromosomal copy of ARS307 was replaced with mutant derivatives of ARS307 containing single point mutations in domain A within the ARS core consensus sequence. The chromosomal origin function of these derivatives was assayed by two-dimensional agarose gel electrophoresis. Deletion of ARS306 deleted the associated replication origin. The effects on chromosomal origin function of mutations in domain A paralleled their effects on ARS function, as measured by plasmid stability. These results demonstrate that chromosomal origin function is a property of the ARS element itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号