首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chinese hamster cell line K12 is temperature-sensitive for the initiation of DNA synthesis. K12 cells synchronized by serum deprivation were collected in early G1(G0). Heterokaryons were formed by fusing chick erythrocytes with serum-starved K12 cells through the use of UV-irradiated Sendai virus. At the permissive temperature (36.5 degrees C), erythrocyte nuclei in heterokaryons enlarged, the chromatin dispersed, and erythrocyte nuclei synthesized DNA at about the same time as the K12 nuclei. At the restrictive temperature (41 degrees C), erythrocyte nuclei enlarged, but neither erythrocyte nor K12 nuclei initiated DNA synthesis. When erythrocyte nuclei were fused with Wg-1A cells, the wild-type parent for ts K12 cells, both kinds of nuclei synthesized DNA at 36.5 degrees C and 41 degrees C. Activation of erythrocyte nuclei was inefficient in heterokaryons incubated in low-serum medium. The results indicate that serum factors and a cellular function defined by the K12 mutation are required for activation of chick erythrocyte nuclear DNA synthesis.  相似文献   

2.
ts 13 cells are a temperature-sensitive (ts) mutant of BHK cells that are known to arrest in G1 when shifted to the nonpermissive temperature. We have determined the entry into S of ts13 cells in five different growth conditions, namely: 1) quiescent, sparse cultures stimulated to proliferate by serum. 2) Quiescent, dense cultures stimulated by serum. 3) Quiescent, sparse cultures stimulated by trypsinization and replating. 4) Quiescent, dense cultures stimulated by trypsinization and replating. 5) Mitotic cells collected by mitotic detachment. For each different growth condition we have also determined the execution point of the mutant function, i.e. the time at which a shift-up to the nonpermissive temperature no longer prevents the entry of cells into S. The median time of entry into S and the execution point varied in different growth conditions, but the distance between the median execution point and the median time of entry into S was remarkably constant, i.e. 3.2 hr. In addition we have fused ts 13 cells cells with chick erythrocytes and studied the ability of ts13 cells in heterokaryon formation to induce DNA synthesis in chick nuclei. Although ts13 cells can induce DNA synthesis in chick nuclei at the permissive temperature, they fail to do so when fused and stimulated at the nonpermissive temperature of 39.5 degrees C.  相似文献   

3.
A temperature-sensitive cell cycle mutant of the BHK cell line   总被引:19,自引:0,他引:19  
A temperature-sensitive growth mutant derived from the BHK 21 cell Line, ts AF8, was found to have greatly reduced DNA synthesis at the nonpermissive temperature. This reduction is mainly due to a decrease in the frequency of cells synthesizing DNA. Upon shift up, ts AF8 becomes blocked in the G1 phase of the cell cycle. The cells acquire elevated cAMP levels and a unimodal distribution of DNA content, equivalent to that of G1 cells at the permissive temperature, Ts AF8 cells blocked at the G1/S boundary with hydroxyurea will enter S when shifted to the nonpermissive temperature. On the other hand, ts AF8 cells arrested m G1 by serum deprivation and shifted to the nonpermissive temperature at the moment of serum addition do not enter S, while those synchronized by isoleucine deprivation and shifted at the time of isoleucine addition will enter S. These data suggest that the cycle arrest point of the ts AF8 mutation is located in G1 between the blocks induced by serum starvation and isoleucine deprivation. The reduction in DNA synthesis caused by the ts AF8 mutation is not reversed by infection or transformation with Polyoma virus. Mitochondrial DNA continues to be synthesized at wild-type levels at the nonpermissive temperature.  相似文献   

4.
Fusion of chick erythrocytes with human primary fibroblasts results in the formation of heterokaryons in which the inactive chick nuclei become reactivated. The expression of chick DNA repair functions was investigated by the analysis of the DNA repair capacity after exposure to ultraviolet (UV) irradiation of such heterokaryons obtained after fusion of chick erythrocytes with normal human or xeroderma pigmentosum (XP) cells of complementation groups A, B, C and D. Unscheduled DNA synthesis (UDS) in normal human nuclei in these heterokaryons is suppressed during the first 2–4 days after fusion. The extent and duration of this suppression is positively correlated with the number of chick nuclei in the heterokaryons. Suppression is absent in heterokaryons obtained after fusion of chicken embryonic fibroblasts with XP cells (complementation group A and C).Restoration of DNA repair synthesis is found after fusion in XP nuclei of all complementation groups studied. It occurs rapidly in XP group A nuclei, starting one day after fusion and reaching near normal human levels after 5–8 days. In nuclei of the B, C and D group increased levels of UDS are found 5 days after fusion. At 8 days after fusion the UDS level is about 50% of that found in normal human nuclei. The pattern of UDS observed in the chick nuclei parallels that of the human counterpart in the fusion. A fast complementation pattern is also observed in chick fibroblast-XP group A heterokaryons resulting within 24 h in a UDS level comparable with that in chick fibroblast-normal human heterokaryons. In heterokaryons obtained after fusion of chick fibroblasts with XP group C cells UDS remains at the level of chick cells. These data suggest that reactivation of chick erythrocyte nuclei results in expression of repair functions which are able to complement the defects in the XP complementation groups A, B, C and D.  相似文献   

5.
A heat-sensitive (hs, arrested at 39.5 degrees C, termed 21-Ta) and a cold-sensitive (cs, arrested at 33 degrees C, termed 21-Fb) clonal cell cycle variant were isolated from the same clone of the P-815 murine mastocytoma line. At the respective nonpermissive temperatures, both the hs and the cs variant were reversibly arrested in G1 phase, and numbers of cells forming colonies upon reincubation at the permissive temperature remained nearly constant for at least 6 days. Cells arrested in G1 by incubation at the respective nonpermissive temperatures were fused to cells of another P-815 clone (31-S) that had been arrested by serum deprivation. Upon reincubation in medium containing 10% serum for 48 h at 39.5 degrees C, 21-Ta x 31-S heterokaryons, similar to 31-S x 31-S homokaryons, entered the S phase, whereas at 33 degrees C, 21-Fb x 31-S heterokaryons, similar to 21-Fb x 21-Fb homokaryons, remained arrested in G1, indicating a recessive expression of the hs and a dominant expression of the cs phenotype.  相似文献   

6.
Several types of culture cells with limited life span (rat embryo fibroblasts, rat chondrocytes and mouse premacrophages) were found to be unable to induce the reactivation of DNA synthesis in the nuclei of non-dividing differentiated cells (mouse peritoneal resident macrophages) in heterokaryons. By contrast, malignant HeLa cells have this ability. In heterokaryons formed by fusion of mouse macrophages with HE239 cells (Syrian hamster fibroblasts transformed with a ts mutant of the SV40 virus), DNA synthesis in macrophage nuclei is reactivated only at the permissive temperature (33° C), at which viral T antigen is stable. Immortalization of rat chondrocytes by transfection with p53 gene enables to induce DNA synthesis in macrophage nuclei upon fusion. All the evidence indicates that the function of immortalizing oncogenes is necessary for the resumption of the DNA synthesis in macrophage nuclei in heterokaryons.  相似文献   

7.
The generation of enzymes located in lysosomes, in cytosol or in endoplasmatic reticulum/Golgi complex is studied in heterokaryons in which chick erythrocyte nuclei are reactivated. The lysosomal enzymes, alpha-glucosidase (alpha-glu) and beta-galactosidase (beta-gal), are synthesized in heterokaryons obtained after fusion of chick erythrocytes with human fibroblasts of patients with Pompe's disease (alpha-glu-deficient) and GM1-gangliosidosis (beta-gal-deficient), respectively. The enzymes appear to be of chick origin and their activities can be detected at first around 4 days after fusion, i.e., at a time when the nucleoli in the erythrocyte nuclei have been reactivated. Maximal activities are reached around 15 days after fusion. No generation of the lysosomal enzyme beta-hexosaminidase is detected in the heterokaryons up to 23 days after fusion of chick erythrocyte with either beta-hexosaminidase A- and B-deficient fibroblasts (Sandhoff's disease) or beta-hexosaminidase A-deficient fibroblasts (Tay-Sachs disease). Similarly no expression of the cytosol enzyme glucose-6-phosphate dehydrogenase (G6PD) is fond up to 30 days after fusion, when chick erythrocytes are fused with fibroblasts from two different G6PD-deficient cell strains (residual activities of 4 and 20% respectively). Indirectly we examined N-acetyl-glucosamine-1-phosphate transferase activity, an enzyme located in the endoplasmic reticulum/Golgi region. This enzyme is needed for the phosphorylation of the lysosomal hydrolases and absence of its activity is the cause of the multiple lysosomal enzyme deficiencies in patients with I-cell disease. The retention of both, chick and human beta-galactosidase in the experiments in which I-cell fibroblasts were fused with chick erythrocytes indicates a reactivation of the gene coding for this phosphorylating enzyme. It also implies that this step in the processing of human lysosomal enzymes is not species-specific.  相似文献   

8.
tsAF8 cells are temperature-sensitive (ts) mutants of BHK-21 cells that arrest at the nonpermissive temperature in the G1 phase of the cell cycle. When made quiescent by serum restriction, they can be stimulated to enter the S phase by 10% serum at 34 degrees C, but not at 40.6 degrees C. Infection by adenovirus type 2 or type 5 stimulates cellular DNA synthesis in tsAF8 cells at both 34 and 40.6 degrees C. Infection of these cells with deletion Ad5dl312, Ad5dl313, Ad2 delta p305, and Ad2+D1) and temperature-sensitive (H5ts125, H5ts36) mutants of adenovirus indicates that the expression of both early regions 1A and 2 is needed to induce quiescent tsAF8 cells to enter the S phase at the permissive temperature. This finding has been confirmed by microinjection of selected adenovirus DNA fragments into the nucleus of tsAF8 cells. In addition, we have shown that additional viral functions encoded by early regions 1B and 5 are required for the induction of cellular DNA synthesis at the nonpermissive temperature.  相似文献   

9.
We have investigated the capacity of a murine cell line with a temperature-sensitive (ts) mutation in the DNA polymerase α (Pola) locus and a series of ts non-Pola mutant cell lines from separate complementation groups to stimulate DNA synthesis, in senescent fibroblast nuclei in heterokaryons. In the Pola mutant × senescent heterodikaryons, both human and murine nuclei display significantly diminished levels of DNA synthesis at the restrictive temperature (39.5°C) as determined by [3H]thymidine labeling in autoradiographs. In contrast, all of the non-Pola mutants, as well as the parental (wild-type) murine cells, induced similar levels of DNA synthesis in both parental nuclei at the nonpermissive and permissive temperatures. Similarly, young human fibroblasts are also able to initiate DNA synthesis in heterokaryons with the ts Pola mutant at the two temperatures. In order to determine if complementation of the non-Pola mutants requires induction of serum responsive factors in the senescent cells, fusion studies of similar design were conducted with young and old human fibroblasts incubated in low serum (0.2%) for 48 hr prior to and after cell fusion. Again, a diminished level of DNA synthesis was observed at 39.5°C in the Pola mutant x senescent cell heterokaryons. In these low-serum studies, both parental nuclei in the Pola x young cell heterokaryons and the human nuclei in heterokaryons with one of the non-Pola mutants (FT107) also displayed diminished levels of DNA synthetic activity. All of the other mutants are able to support similar levels of synthetic activity at both temperatures in the presence of reduced serum. The nature of the mutation in three of the non-Pola lines has not been determined but, like the Pola mutant cells, are inhibited in the G1 phase of the cell cycle when incubated at the nonpermissive temperature (39.5°C). The fourth non-Pola mutant line is known to have at least one ts mutation in the cdc2 gene and is inhibited in the G2 phase when exposed to 39.5°C. These results suggest that there may be a functional deficiency of pol α in senescent human fibroblasts, and this replication factor may be one of the rate-limiting factors involved in loss of the capacity to initiate DNA synthesis in senescent cells. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Fusion of terminally differentiated chick erythrocytes (CE) with replicating quail myoblasts or established L6J1 rat myoblasts results in reactivation of DNA synthesis in the dormant CE nuclei and in suppression of DNA synthesis in the myoblast nuclei. The nuclei of primary quail myoblasts are more effectively inhibited than the nuclei of established rat myoblasts. Inhibition of DNA replication occurs not only by preventing G1 nuclei from entering S-phase but also by blocking nuclei in S-phase and by delaying nuclei in G2 from undergoing mitosis and starting a new DNA replication cycle. No inhibition of DNA synthesis could be observed when mouse erythrocytes, i.e., erythrocytes lacking nuclei, were fused with rat myoblasts to generate mouse-globin-containing L6J1 cybrids. — Reactivation of CE nuclei is associated with a loss of the tissuespecific H5 histone variant. Complete elimination of H5 histone, however, does not seem to be a necessary prerequisite for the initiation or completion of DNA replication in CE nuclei since H5 antigens are found on reactivated G1, S, and G2 nuclei.  相似文献   

11.
Attempts were made to reprogram chick erythrocyte nuclei to specify the synthesis of chick myosin. Chick erythrocytes were fused with rat myogenic cells with the aid of UV-inactivated Sendai virus. In the heterokaryons and hybrid myotubes which resulted from this fusion, the erythrocyte nuclei resumed RNA synthesis and formed nucleoli. Although some new chick antigens developed in those myotubes which contained fully reactivated chick erythrocyte nuclei, accumulation of chick myosin could not be detected by immunological methods. Neither small heterokaryons nor large hybrid myotubes which were actively synthesizing rat myosin reacted with antibodies directed against chick myosin. A small number of mononucleated cells, believed to be synkaryons formed by mitotic division of heterokaryons, did, however, react strongly with antibodies directed against chick myosin and showed a cross striation typical of skeletal muscle. The frequency of such cells was too low, however, to permit karyological analysis or further characterization of the antigen. Hybrids between chick myoblasts and rat myoblasts produced both chick and rat myosin thus indicating that simultaneous translation of chick and rat mRNA for myosin in a common cytoplasm was possible. In summary the evidence obtained suggested that reprogramming of chick erythrocyte nuclei, if it did occur in the present system, was a rare phenomenon.The possibility that hybrids between chick erythrocytes and rat myoblasts expressed markers typical of an erythroid phenotype was examined by immune staining with antibodies directed against chick haemoglobin. The results suggested that haemoglobin was introduced into hybrid cells by erythrocytes which failed to lyse before fusion. The intensity of this immune fluorescence decreased with increasing time after fusion. The rate at which this decrease occurred was not affected by inhibition of RNA synthesis. Thus, there was no evidence for the accumulation of haemoglobin in the hybrid cells.  相似文献   

12.
13.
Pattern of chick gene activation in chick erythrocyte heterokaryons   总被引:1,自引:1,他引:0       下载免费PDF全文
The reactivation of chicken erythrocyte nuclei in chick-mammalian heterokaryons resulted in the activation of chick globin gene expression. However, the level of chick globin synthesis was dependent on the mammalian parental cell type. The level of globin synthesis was high in chick erythrocyte-rat L6 myoblast heterokaryons but was 10-fold lower in chick erythrocyte-mouse A9 cell heterokaryons. Heterokaryons between chick erythrocytes and a hybrid cell line between L6 and A9 expressed chick globin at a level similar to that of A9 heterokaryons. Erythrocyte nuclei reactivated in murine NA neuroblastoma, 3T3, BHK and NRK cells, or in chicken fibroblasts expressed less than 5% chick globin compared with the chick erythrocyte-L6 myoblast heterokaryons. The amount of globin expressed in heterokaryons correlated with globin mRNA levels. Hemin increased beta globin synthesis two- to threefold in chick erythrocyte-NA neuroblastoma heterokaryons; however, total globin synthesis was still less than 10% that of L6 heterokaryons. Distinct from the variability in globin expression, chick erythrocyte heterokaryons synthesized chick constitutive polypeptides in similar amounts independent of the mammalian parental cell type. Approximately 40 constitutive chick polypeptides were detected in heterokaryons after immunopurification and two-dimensional gel electrophoresis. The pattern of synthesis of these polypeptides was similar in heterokaryons formed by fusing chicken erythrocytes with rat L6 myoblasts, hamster BHK cells, or mouse neuroblastoma cells. Three polypeptides synthesized by non-erythroid chicken cells but less so by embryonic erythrocytes were conspicuous in heterokaryons. Two abundant erythrocyte polypeptides were insignificant in non-erythroid chicken cells and in heterokaryons.  相似文献   

14.
Cytoplasmic regulation of two G1-specific temperature-sensitive functions   总被引:4,自引:0,他引:4  
G J Jonak  R Baserga 《Cell》1979,18(1):117-123
tsAF8 and ts13 cells are temperature-sensitive (ts) mutants of BHK cells that specifically arrest, at nonpermissive temperature, in the G1 phase of the cell cycle. These two mutants can complement each other. Both cell lines can be made quiescent by serum deprivation (G0). When subsequently stimulated by serum, they can enter S phase at 34 degrees C but not at 39.5 degrees-40.6 degrees C. We have used these mutants to determine whether the nucleus is needed during the G0 leads to S transition for the expression of the G1 ts functions. For this purpose, we fused cytoplasts of G0-tsAF8 with whole ts13 cells in G0, and cytoplasts of G0-ts13 with whole tsAF8 cells in G0. Serum stimulation at the nonpermissive temperature induced DNA synthesis in both types of such fusion products. No DNA synthesis was induced by serum stimulation at the nonpermissive temperature in fusion products constructed between either G0-tsAF8 cytoplasts and whole G0-tsAF8 cells or G0-ts13 cytoplasts and whole G0-ts13 cells. These results demonstrate that the information for these two ts functions, which are required for entry of serum-stimulated cells into the S phase, are already present in the cytoplasm of G0 cells--that is, before serum stimulation commits them to the transition from the nonproliferating to the proliferating state.  相似文献   

15.
Cells transformed by tsA mutants of simian virus 40 (SV40) are temperature sensitive for the maintenance of the transformed phenotype. The kinetics of induction of DNA synthesis were determined for hamster cell transformants shifted to the permissive temperature after a 48-h serum arrest at the nonpermissive temperature. DNAsynthesis was initiated in the tsA transformants by 8 h after shiftdown was maximal by 12 h. The presence or absence of fetal bovine serum at the time of temperature shift had no effect on the kinetics of initiation of DNA synthesis. Analysis of TTP in tsA transformants revealed similar levels of incorporation of [3H]thymidine into TTP at both permissive and nonpermissive temperatures. Autoradiography revealed that by 12 h after a shift to the permissive temperature, approximately 50% of the cells exhibited labeled nuclei after a 60-min pulse with [3H]thymidine, indicating that a majority of the cells were actively synthesizing DNA. By 8 to 12 h after a shiftup of confluent tsA transformants to the nonpermissive temperature, the number of labeled nuclei was reduced to approximately 16%, regardless of serum concentration. These data indicate that the SV40 gene A product, either directly or indirectly, regulates cellular DNA synthesis in transformed cells.  相似文献   

16.
A method for the isolation of reactivated chick erythrocyte nuclei from heterokaryons was developed. The heterokaryons were produced by fusing chick erythrocytes with HeLa or L cells in the presence of inactivated Sendai virus. At various time intervals after fusion nuclei were isolated directly from the monolayer by treatment with an acidic detergent solution. Chick erythrocyte nuclei were then separated from other nuclei (HeLa or L cell) by centrifugation on sucrose gradients. The purified preparation of reactivated chick erythrocyte nuclei was shown to be free from other nuclei and cytoplasmic contamination. By using L cells which had been labelled with 3H-leucine before fusion or heterokaryons labelled after fusion it was demonstrated that labelled mouse proteins migrate from the cytoplasm of the heterokaryons into the reactivating chick erythrocyte nuclei. 3H-uridine labelling of heterokaryons made by fusing UV-irradiated chick erythrocytes with L cells failed to reveal any significant migration of mouse RNA into the chick erythrocyte nuclei.  相似文献   

17.
Nonsynchronized and hydroxyurea (HU)-synchronized SV40-transformed human cells (W98VaD) were fused with chick embryo erythrocytes (CE). The uptake of T antigen by CE nuclei was compared with initiation of chick nuclear DNA synthesis. Uptake of T antigen by CE nuclei occurred at about the same time after fusion with asynchronous as with HU-synchronized cells. CE nuclei rapidly became T antigen-positive between 16 h and 28 h after fusion and usually almost all CE nuclei were T antigen-positive by 48 h after fusion. In contrast, initiation of chick nuclear DNA synthesis occurred as a function of time after reversal of the HU block, when the host cell nuclei were also synthesizing DNA. Chick nuclear DNA synthesis occurred in many heterokaryons before the CE nuclei became T antigen-positive by immunofluorescence.  相似文献   

18.
Suppression of unscheduled DNA synthesis (UDS) after exposure to ultraviolet (UV) light in the human nuclei results when diploid human fibroblasts are fused with chick erythrocytes. The suppression is positively correlated with the number of erythrocyte nuclei in the heterokaryons, with a maximal effect at 36 h after fusion. Evidence is presented that this suppression is due to lowered levels of the enzymes involved in UDS as a result of inhibition of the RNA synthesis by chick components. No suppression of UDS is detected in the human nuclei of the HeLa-chick erythrocyte heterokaryons. In HeLa cells the rate of RNA synthesis is about 10 times higher than the rate in the normal diploid fibroblasts, and the relatively small inhibitory influence of the chick components will therefore not lead to a limitation of the enzymes involved in UDS in the HeLa-chick erythrocyte heterokaryons.  相似文献   

19.
Cultures of ts BN75, a temperature-sensitive mutant of BHK 21 cells, show a gradual biphasic drop in [3H]thymidine incorporation together with an accumulation of cells having a G2 DNA content when incubated at 39.5 degrees. However, when higher (41 degrees - 42 degrees) nonpermissive temperatures were used, the major block was in S-phase DNA synthesis. The cultures of ts BN75 shifted to 42 degrees at the start of the S phase, cell-cycle progress was arrested in the middle of S, while under these conditions wild-type BHK cells underwent at least one cycle of DNA synthesis. When ts BN75 cells growth-arrested at high temperature with a G2 DNA content were shifted to the permissive temperature (33.5 degrees C), the restart of DNA synthesis preceded the appearance of mitotic cells. These data suggest that the ts defect of ts BN75 cells might affect primarily the S phase of the cycle rather than the G2 phase.  相似文献   

20.
Two temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59, ts43 and ts379, have been described previously to be ts in infectivity but unaffected in RNA synthesis (M. J. M. Koolen, A. D. M. E. Osterhaus, G. van Steenis, M. C. Horzinek, and B. A. M. van der Zeijst, Virology 125:393-402, 1983). We present a detailed analysis of the protein synthesis of the mutant viruses at the permissive (31 degrees C) and nonpermissive (39.5 degrees C) temperatures. It was found that synthesis of the nucleocapsid protein N and the membrane protein M of both viruses was insensitive to temperature. However, the surface protein S of both viruses was retained in the endoplasmic reticulum at the nonpermissive temperature. This was shown first by analysis of endoglycosidase H-treated and immunoprecipitated labeled S proteins. The mature Golgi form of S was not present at the nonpermissive temperature for the ts viruses, in contrast to wild-type (wt) virus. Second, gradient purification of immunoprecipitated S after pulse-chase labeling showed that only wt virus S was oligomerized. We conclude that the lack of oligomerization causes the retention of the ts S proteins in the endoplasmic reticulum. As a result, ts virus particles that were devoid of S were produced at the nonpermissive temperature. This result could be confirmed by biochemical analysis of purified virus particles and by electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号