首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble extracts of M13-am5-infected Escherichia coli cells can carry out multiple rounds of M13 duplex DNA replication when supplemented with helix-destabilising protein of E. coli. Similarly addition of the helix-destabilising M13 gene 5 protein in low concentrations (up to 30 micrograms/ml) stimulates the replication of double-stranded M13 DNA. In contrast, higher concentrations of gene 5 protein (but not of E. coli helix-destabilising protein) cause a preferential inhibition of complementary strand synthesis resulting in a switch from double-strand replication to single-strand synthesis. Depending on the addition of the appropriate amounts of these two helix-destabilising proteins either stage of M13 DNA replication can now be studied with cell-free preparations.  相似文献   

2.
Cell-free extracts from Escherichia coli contain a DNA polymerase activity resistant to SH-blocking agents, which is capable of synthesizing complementary strand DNA on a circular M-13 DNA template by extension of RNA primers. This activity is considered to be identical with DNA polymerase I (or some altered form of this enzyme) since it is missing in extracts from po1A- cells. DNA synthesis in the presence of SH-blocking agents occurs at a reduced rate as compared to untreated controls and leads to the formation of DNA chains of defined size (0.4-0.5 genome's length). It is concluded that efficient M-13 duplex DNA synthesis requires the cooperation of both DNA polymerase I and III.  相似文献   

3.
DNA molecules with restricted binding of intercalating dyes are observed as replicative intermediates during the replication of bacteriophage M-13 duplex DNA in a cellular system in vitro prepared by plasmolysis of M-13-am5-infected Escherichia coli cells. Restriction of dye binding is abolished by heating the DNA to 80 degrees C, but can be recovered by slow cooling of the heat-treated DNA. Radioactive pulse-label incorporated by these molecules is found exclusively in elongated viral strands of more than one genome length. In the electron microscope this DNA fraction is seen to contain a significant number of duplex DNA rings with two single-stranded tails protruding from the same region of the ring. It is proposed that these structures arise by branch migration during the isolation of replicating molecules containing only one single-stranded tail. The topological constraint in these molecules is most likely caused by base-pairing between partially complementary regions of the two single-stranded tails.  相似文献   

4.
Preferential transfection with M13mp2 RF DNA synthesized in vitro   总被引:2,自引:0,他引:2  
R C Hayes  J E LeClerc 《Gene》1983,21(1-2):1-8
Single-strand DNA binding protein (SSB) from Escherichia coli abolishes transfection of E.coli by viral M13mp2 DNA at levels that inhibit transfection by M13mp2 replicative form (RF) DNA by approx. 25%. Synthesis of M13mp2 RF DNA (SS leads to DS) has been carried out using DNA polymerase I (Klenow fragment) and a unique 15-nucleotide primer. A time course for in vitro synthesis showed that the increase in transfection in the presence of SSB paralleled DNA synthesis after an initial lag period for transfection. Digestion of replication products with restriction endonucleases and S1 endonuclease indicates that only those molecules that are fully or almost fully duplex transfect competent cells in the presence of SSB.  相似文献   

5.
In the pairing reaction between circular gapped and fully duplex DNA, RecA protein first polymerizes on the gapped DNA to form a nucleoprotein filament. Conditions that removed the formation of secondary structure in the gapped DNA, such as addition of Escherichia coli single-stranded DNA binding protein or preincubation in 1 mM-MgCl2, optimized the binding of RecA protein and increased the formation of joint molecules. The gapped duplex formed stable joints with fully duplex DNA that had a 5' or 3' terminus complementary to the single-stranded region of the gapped molecule. However, the joints formed had distinct properties and structures depending on whether the complementary terminus was at the 5' or 3' end. Pairing between gapped DNA and fully duplex linear DNA with a 3' complementary terminus resulted in strand displacement, symmetric strand exchange and formation of complete strand exchange products. By contrast, pairing between gapped and fully duplex DNA with a 5' complementary terminus produced a joint that was restricted to the gapped region; there was no strand displacement or symmetric strand exchange. The joint formed in the latter reaction was likely a three-stranded intermediate rather than a heteroduplex with the classical Watson-Crick structure. We conclude that, as in the three-strand reaction, the process of strand exchange in the four-strand reaction is polar and progresses in a 5' to 3' direction with respect to the initiating strand. The present study provides further evidence that in both three-strand and four-strand systems the pairing and strand exchange reactions share a common mechanism.  相似文献   

6.
The synthesis of neomycin covalently attached at the C5-position of 2'-deoxyuridine is reported. The synthesis outlined allows for incorporation of an aminoglycoside (neomycin) at any given site in an oligonucleotide (ODN) where a thymidine (or uridine) is present. Incorporation of this modified base into an oligonucleotide, which is complementary to a seven-bases-long alpha-sarcin loop RNA sequence, leads to enhanced duplex hybridization. The increase in Tm for this duplex (DeltaTm = 6 degrees C) suggests a favorable interaction of neomycin within the duplex groove. CD spectroscopy shows that the modified duplex adopts an A-type confirmation. ITC measurements indicate the additive effects of ODN and neomycin binding to the RNA target (Ka = 4.5 x 107 M-1). The enhanced stability of the hybrid duplex from this neomycin-ODN conjugate originates primarily from the enthalpic contribution of neomycin {DeltaDeltaHobs = -7.21 kcal/mol (DeltaHneomycin conjugated - DeltaH nonconjugated)} binding to the hybrid duplex. The short linker length allows for selective stabilization of the hybrid duplex over the hybrid triplex. The results described here open up new avenues in the design and synthesis of nucleo-aminoglycoside-conjugates (N-Ag-C) where the inclusion of any number of aminoglycoside (neomycin) molecules per oligonucleotide can be accomplished.  相似文献   

7.
The opposite strands of the ColE1 and ColE3 plasmids were isolated as circular single-stranded DNA molecules. These molecules were compared with M13 and phi X174 viral DNA with respect to their capacity to function as templates for in vitro DNA synthesis by a replication enzyme fraction from Escherichia coli. It was found for both ColE plasmids that the conversion of H as well as L strands to duplex DNA molecules closely resembles phi X174 complementary strand synthesis and occurs by a rifampicin-resistant priming mechanism involving the dnaB, dnaC, and dnaG gene products. Restriction analysis of partially double-stranded intermediates indicates that preferred start sites for DNA synthesis are present on both strands of the ColE1 HaeII-C fragment. Inspection of the nucleotide sequence of this region reveals structural similarities with the origin of phi X174 complementary strand synthesis. We propose that the rifampicin-resistant initiation site (rri) in the ColE1 L strand is required for the priming of discontinuous lagging strand synthesis during vegetative replication and that the rri site in the H strand is involved in the initiation of L strand synthesis during conjugative transfer.  相似文献   

8.
A targeted ss (single stranded) DNA cleavage technique is reported which involves the use of synthetic oligomers complementary to the ss M13 DNA polylinker. BamHI, SmaI, and KpnI restriction enzymes were tested with a partial duplex DNA formed from ss M13 DNA and a nested series of fragments derived from a synthetic 21-mer which were complementary to the polylinker region. These enzymes require up to two flanking nucleotides in addition to the hexameric recognition site for efficient cleavage. This technique could be useful for effecting unique cleavages of DNA with enzymes which generally give a large number of fragments and for strategies of ss DNA manipulation.  相似文献   

9.
Conversion of phi X174 viral, single-stranded circular DNA to the duplex replicative form (RF), previously observed with partially purified enzymes, has now been demonstrated with the participation of 12 nearly pure Escherichia coli proteins containing approximately 30 polypeptides. To complete the synthesis of a full length complementary strand, E. coli DNA polymerase I was needed to fill the short gap left by DNA polymerase III holoenzyme, and to remove the primer and replace it with DNA. Production of supercoiled RF required the further actions of E. coli DNA ligase and gyrase. Net synthesis of viral circles was obtained by coupling the formation of RF supercoils to the actions of the phi X174-encoded gene A protein and E. coli rep protein. Viral DNA circles produced from enzymatically synthesized supercoiled RF, serving as template-substrate, were indistinguishable from those produced from RF isolated from infected cells; synthetic RF and the viral circles generated from it by replication were as biologically active in transfection of spheroplasts as the forms obtained from infected cells and virions. The conversion of single-stranded circular DNA to RF is suggested here as a model for discontinuous synthesis of the lagging strand of the E. coli chromosome. The primosome, a complex of some of the replication proteins responsible for initiations of DNA chains, will be described elsewhere. Multiplication of RF supercoils, described in the succeeding paper, proceeds by a rolling-circle mechanism in which the synthesis of viral strands may have analogies to the continuous synthesis of the leading strand of the E. coli chromosome.  相似文献   

10.
Cloning of the phi X174 viral origin of replication into phage M13mp8 produced an M13-phi X174 chimera, the DNA of which directed efficient replicative-form----single-strand rolling-circle replication in vitro. This replication assay was performed with purified phi X174-encoded gene A protein, Escherichia coli rep helicase, single-stranded DNA-binding protein, and DNA polymerase III holoenzyme. The nicking of replicative-form I (RFI) DNA by gene A protein was essentially unaffected by the presence of UV lesions in the DNA. However, unwinding of UV-irradiated DNA by the rep helicase was inhibited twofold as compared with unwinding of the unirradiated substrate. UV irradiation of the substrate DNA caused a strong inhibition in its ability to direct DNA synthesis. However, even DNA preparations that contained as many as 10 photodimers per molecule still supported the synthesis of progeny full-length single-stranded DNA. The appearance of full-length radiolabeled products implied at least two full rounds of replication, since the first round released the unlabeled plus viral strand of the duplex DNA. Pretreatment of the UV-irradiated DNA substrate with purified pyrimidine dimer endonuclease from Micrococcus luteus, which converted photodimer-containing supercoiled RFI DNA into relaxed, nicked RFII DNA and thus prevented its replication, reduced DNA synthesis by 70%. Analysis of radiolabeled replication products by agarose gel electrophoresis followed by autoradiography revealed that this decrease was due to a reduction in the synthesis of progeny full-length single-stranded DNA. This implies that 70 to 80% of the full-length DNA products produced in this system were synthesized on molecules that carried photodimers. Thus, similarly to its activity on UV-irradiated single-stranded DNA, DNA polymerase III holenzyme can bypass pyrimidine photodimers in the more complex replicative form --->single-strand replication, which involves, in addition to the polymerizing activity, the unwinding of the duplex by the rep helicase and the participation of a more complex multiprotein replisome.  相似文献   

11.
The binding of core histones (H2A, H2B, H3, H4) to a circular plasmid DNA and to a circular DNA-RNA hybrid molecule of similar size has been compared. Circular hybrid molecules were formed from single stranded fd DNA by synthesis of the complimentary strand with ribonucleotides using wheat germ RNA polymerase II. Upon reconstitution of plasmid DNA circles with histone, the sedimentation profiles of the DNA remained sharp by increased several fold in rate. Material from the peak fractions of these sedimentations appeared to be condensed circular loops of nucleosomes when examined by electron microscopy (EM), and the mass ratio of DNA to histone (at the histone concentrations which produced the fastest sedimentations) was typical of native chromatin. In contrast, the sedimentation behavior of DNA-RNA hybrid circles after addition of histone remained unchanged except for a minor fraction which exhibited a broad and faster sedimentation rate. Examination by EM revealed that most of the molecules appeared identical to protein free hybrid circles while the minor, faster sedimenting fraction appeared to be two or more circles bound together by protein aggregates. Finally, a linear molecule consisting of about 3000 base pairs of duplex DNA covalently joined on both ends to 1500 base pairs of RNA-DNA hybrid helix was constructed. Reconstitution of this molecule with core histone showed nucleosome formation only on the central DNA duplex region. Isopycnic banding of fixed hybrid-histone mixtures showed that little or no histone had bound to the bulk of the full hybrid molecules. We suggest that the presence of RNA in a nucleic acid duplex inhibits the condensation of the duplex into a nucleosomal structure by histone.  相似文献   

12.
A cloned 270-nucleotide fragment from the origin region of the M13 duplex replicative form DNA confers an M13-dependent replication mechanism upon the plasmid vector pBR322. This M13 insert permits M13 helper-dependent replication of the hybrid plasmid in polA cells which are unable to replicate the pBR322 replicon alone. Using in vitro techniques, we have constructed several plasmids containing deletions in the M13 DNa insert. The endpoints of these deletions have been determined by DNA sequence analysis and correlated with the transformation and replication properties of each plasmid. Characterization of these deletion plasmids allows the following conclusions. (i) The initiation site for M13 viral strand replication is required for helper-dependent propagation of the chimeric plasmid. (ii) A DNA sequence in the M13 insert, localized between 89 and 129 nucleotides from the viral strand initiation site, is necessary for efficient transformation of polA cells. A chimeric plasmid containing the viral strand initiation site, but lacking this additional 40 nucleotide M13 sequence, transforms helper-infected cells at a frequency approximately 10(4)-fold less than that of plasmids containing this additional DNA segment. (iii) The entire M13 complementary strand origin can be deleted without affecting M13-dependent transformation by the hybrid plasmids. We propose a model in which replication of one strand of duplex chimera initiates by nicking at the gene II protein nicking site in the viral strand of the M13 insert, followed by asymmetric single-strand synthesis. Initiation of the complementary strand possibly occurs within plasmid sequences.  相似文献   

13.
We have examined the duplex DNA unwinding (helicase) properties of the Escherichia coli helicase II protein (uvrD gene product) over a wide range of protein concentrations and solution conditions using a variety of duplex DNA substrates including fully duplex blunt ended and nicked circular molecules. We find that helicase II protein is able to initiate on and completely unwind fully duplex DNA molecules without the requirement for a covalently attached 3' single-stranded DNA tail. This DNA unwinding activity is dependent upon Mg2+ and ATP and requires that the amount of protein be in excess of that needed to saturate the resulting single-stranded DNA. Unwinding experiments on fully duplex blunt ended DNA with lengths of 341, 849, 1625, and 2671 base pairs indicate that unwinding occurs at the same high ratios of helicase II protein/nucleotide, independent of DNA length (50% unwinding requires approximately 0.6 helicase II monomers/nucleotide in 2.5 mM MgCl2, 10% glycerol, pH 7.5, 37 degrees C). Helicase II protein is also able to unwind completely a nicked circular DNA molecule containing 2671 base pairs. At lower but still high molar ratios of helicase II protein to DNA, duplex DNA molecules containing a single-stranded (ss) region attached to a 3' end of the duplex are preferentially unwound in agreement with the results obtained by S. W. Matson [1986) J. Biol. Chem. 261, 10169-10175). This preferential unwinding of duplex DNA with an attached 3' ssDNA most likely reflects the availability of a high affinity site (ssDNA) with the proper orientation for initiation; however, this may not reflect the type of DNA molecule upon which helicase II protein initiates DNA unwinding in vivo. The effects of changes in NaCl, NaCH3COO, and MgCl2 concentration on the ability of helicase II protein to unwind fully duplex DNA and duplex DNA with a 3' ssDNA tail have also been examined. Although the unwinding of fully duplex and nicked circular DNA molecules reported here occurs at higher helicase II protein to DNA ratios than have been previously used in most studies of this protein in vitro, this activity is likely to be relevant to the function of this protein in vivo since very high levels of helicase II protein accumulate in E. coli during the SOS response to DNA damage (approximately 2-5 x 10(4) copies/cell).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
J D Engel  N Davidson 《Biochemistry》1978,17(18):3883-3888
We have observed that the enzyme polynucleotide phosphorylas from M. luteus or from E. coli will polymerize adenosine (A) from adenosine diphosphate onto 3' ends of RNA molecules. For gene mapping, the poly(A)-tailed RNA is hybridized to its complementary sequence on a longer DNA strand. The position of the poly(A)tail, and thus the position of the 3' end of the RNA on the DNA strand, can then be observed by electron microscopy. Our preferred mapping technique involves the synthesis of a poly(A)-specific label by polymerization of a poly(dBrU) tail onto one or both ends of a linear duplex DNA of defined length (a restriction fragment) and hybridization of this label to the poly(A) tail. In test experiments with a plasmid containing a Drosophila DNA sequence coding for 5S rRNA genes, overall labeling efficiencies of 70--80% were achieved.  相似文献   

15.
The primosome is a mobile multiprotein priming apparatus that requires seven Escherichia coli proteins for assembly (the products of the dnaB, dnaC and dnaG genes; replication factor Y (protein n'); and proteins i, n, and n"). While the primosome is analagous to the phage T7 gene 4 protein and phage T4 gene 41/61 proteins in its DNA G-catalyzed priming function, its ability to act similarly also as a DNA helicase has remained equivocal. The role of the primosome in unwinding duplex DNA strands was investigated in the coliphage phi X174 SS(c)----replicative form DNA replication reaction in vitro, which requires the E. coli single-stranded DNA binding protein, the primosomal proteins, and the DNA polymerase III holoenzyme. Multigenome-length, linear, double-stranded DNA molecules were generated in this reaction, presumably via a rolling circle-type mechanism. Synthesis of these products required the presence of a helicase-catalyzed strand-displacement activity to permit multiple cycles of continuous complementary (-) strand synthesis. The participation of the primosome in this helicase activity was supported by demonstrating that other SS(c) DNA templates (G4 and alpha-3), which lack primosome assembly sites, failed to support significant linear multimer production and that replication of phi X174 with the general priming system (the DNA B and DNA G proteins and DNA polymerase III holoenzyme) resulted in a 13-fold lower rate of linear multimer synthesis.  相似文献   

16.
Rolling circle replication has previously been reconstituted in vitro using M13 duplex circles containing preformed forks and the 10 purified T4 bacteriophage replication proteins. Leading and lagging strand synthesis in these reactions is coupled and the size of the Okazaki fragments produced is typical of those generated in T4 infections. In this study the structure of the DNAs and DNA-protein complexes engaged in these in vitro reactions has been examined by electron microscopy. Following deproteinization, circular duplex templates with linear tails as great as 100 kb are observed. The tails are fully duplex except for one to three single-stranded DNA segments close to the fork. This pattern reflects Okazaki fragments stopped at different stages in their synthesis. Examination of the DNA-protein complexes in these reactions reveals M13 duplex circles in which 64% contain a single large protein mass (replication complex) and a linear duplex tail. In 56% of the replicating molecules with a tail there is at least one fully duplex loop at the replication complex resulting from the portion of the lagging strand engaged in Okazaki fragment synthesis folding back to the replisome. The single-stranded DNA segments at the fork bound by gene 32 and 59 proteins are not extended but rather appear organized into highly compact structures ("bobbins"). These bobbins constitute a major portion of the mass of the full replication complex.  相似文献   

17.
Nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) was expressed in Escherichia coli and purified. The protein displayed a variety of activities on DNA structure, all reflecting an ability to promote transition between double-helical and single-stranded conformations. We found that, in addition to its previously described ability to accelerate renaturation of complementary DNA strands, the HIV-1 NC protein could substantially lower the melting temperature of duplex DNA and could promote strand exchange between double-stranded and single-stranded DNA molecules. Moreover, in the presence of HIV-1 NC, annealing of a single-stranded DNA molecule to a complementary DNA strand that would yield a more stable double-stranded product was favored over annealing to alternative complementary DNA strands that would form less stable duplex products (selective annealing). NC thus appears to lower the kinetic barrier so that double-strand <==> single-strand equilibrium is rapidly reached to favor the lowest free-energy nucleic acid conformation. This activity of NC may be important for correct folding of viral genomic RNA and may have practical applications.  相似文献   

18.
A role for RNA synthesis in homologous pairing events.   总被引:2,自引:0,他引:2  
  相似文献   

19.
Summary The replication of the ColE1 plasmid was studied in extracts from E. coli dnaG mutants. It was found that the synthesis of the complementary strands of ColE1 DNA can be carried out in these extracts in two consecutive steps: (1) synthesis of the leading L strand independent of the dnaG function, and (2) synthesis of the lagging H strand depending upon addition of wild-type dnaG protein. In contrast to L strand synthesis, the latter reaction is insensitive to rifampicin and novobiocin. Both synthetic pathways are however blocked by antiserum directed against dnaB protein. This indicates an additional role of the dnaB protein in duplex DNA replication besides assisting the dnaG protein in the priming of lagging strand synthesis. The T7 gene-4 protein acting in conjunction with T7 DNA polymerase can substitute for both the function of the dnaB and dnaG protein. It is concluded that plasmid replication proceeds by a semi-discontinuous mechanism.  相似文献   

20.
A universally applicable labelling and purification process was established to prepare biologically active proteins with a stoichiometric 1:1 ratio of attached dye-label. The dye-label is linked to a specific DNA sequence, which acts as a barcode-like tag for affinity purification. The DNA-dye tag is covalently bound to the target protein, which is present in excess to assure the binding of not more than one dye per molecule. Affinity purification occurs at magnetic beads that are functionalized with oligonucleotides that are complementary to the DNA-tag of the labelled proteins but for one or two mismatches. Washing removes all unbound, unlabelled molecules. The labelled protein is subsequently released by the addition of a fully complementary oligonucleotide. This process allows a gentle purification of a protein fraction that has exactly one label attached to each molecule under conditions that preserve protein structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号