首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Content of nonprotein sulfhydryls (NPSH) was found to be higher in rat renal cortex than in external medulla and papilla. Administration of bromoethylamine (BEA), at a dose that produces extensive papillary necrosis and minor effects in the other renal segments, induced a significant reduction in NPSH levels of renal cortex and external medulla, with no changes in the papilla. Treatment with N-acetyl-L-cysteine (NAC) elicited an increase in papillary NPSH and a decrease in the cortex, with opposite changes being observed with an amino acid mixture of glutamine, glycine, and cystine (AM). Similar results were found in animals pretreated with NAC or AM prior to BEA intoxication. These pretreatments protect the cortex, external medulla, and papilla from the necrosis induced by BEA. It is suggested that protection of BEA-induced renal necrosis by NAC or AM pretreatments might be due to different mechanisms, with NPSH playing direct or indirect roles, respectively.  相似文献   

2.
Platelet-activating factor (PAF) is one of the most potent inflammatory mediators. It is biosynthesized by either the de novo biosynthesis of glyceryl ether lipids or by remodeling of membrane phospholipids. PAF is synthesized and catabolized by various renal cells and tissues and exerts a wide range of biological activities on renal tissue suggesting a potential role during renal injury. The aim of this study was to identify whether cortex and medulla of human kidney contain the acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF AT) activity which catalyses the last step of the remodeling biosynthetic route of PAF and is activated in inflammatory conditions. Cortex and medulla were obtained from nephrectomized patients with adenocarcinoma and the enzymatic activity was determined by a trichloroacetic acid precipitation method. Lyso-PAF AT activity was detected in both cortex and medulla and distributed among the membrane subcellular fractions. No statistical differences between the specific activity of cortical and medullary lyso-PAF AT was found. Both cortical and medullary microsomal lyso-PAF ATs share similar biochemical properties indicating common cellular sources.  相似文献   

3.
Human umbilical vein endothelial cells (HUVEC) produce platelet-activating factor (PAF) by a remodeling pathway involving a phospholipase A2 followed by an acetyl-CoA-dependent acetyltransferase which acetylates a lyso-PAF intermediate to form PAF and is stimulated by a variety of agents that generate inflammatory and allergic responses. A second route for PAF synthesis in mammalian tissues is a de novo pathway, which requires the participation of three enzymes: 1-alkyl-2-lyso-sn-glycero-3-phosphate (alkyllyso-GP): acetyl-CoA acetyltransferase, 1-alkyl-2-acetyl-sn-glycero-3-phosphate phosphohydrolase, and dithiothreitol (DDT)-insensitive 1-alkyl-2-acetyl-sn-glycerol (alkylacetyl-G):CDP-cholinecholinephosphotransferase. In the present study we show that protein kinase C activation by phorbol 12-myristate 13-acetate (PMA) induces PAF production in HUVEC by an increase of both alkyllyso-GP:acetyl-CoA acetyltransferase and DTT-insensitive alkylacetyl-G:CDP-choline choline-phosphotransferase. PAF synthesis, labeled precursors [( 3H]acetate and [methyl-3H]choline) incorporation, and both enzyme activities of the de novo pathway increase concomitantly in response to different doses of PMA. PMA does not activate the enzymes of the remodeling pathway. We conclude that both remodeling and the de novo pathway for PAF synthesis are present in HUVEC and might be alternatively activated depending on the conditions of cell stimulation.  相似文献   

4.
Tumor necrosis factor stimulates polymorphonuclearneutrophils to synthesize leukotriene B4 and platelet-activating factor (PAF), but alpha 1-proteinase inhibitor and alpha 1-antichymotrypsin block this response. However, proteinases such as elastase and cathepsin G induce preferentially synthesis of PAF. An acetyltransferase required, together with phospholipase A2, in the remodeling pathway of PAF synthesis is activated in polymorphonuclearneutrophils stimulated by tumor necrosis factor and elastase. In contrast, 1-oleyl-2-acetylglycerol, a protein kinase C activator, promotes PAF formation by the de novo biosynthetic pathway without activating the acetyltransferase. Staurosporine, an inhibitor of protein kinase C, blocks PAF production apparently by inhibiting phospholipase A2. This suggests that diacylglycerols are involved in activating both pathway of PAF synthesis.  相似文献   

5.
We examined the potential role of prostaglandins in the development of analgesic nephropathy in the Gunn strain of rat. The homozygous Gunn rats have unconjugated hyperbilirubinemia due to the absence of glucuronyl transferase, leading to marked bilirubin deposition in renal medulla and papilla. These rats are also highly susceptible to develop papillary necrosis with analgesic administration. We used homozygous (jj) and phenotypically normal heterozygous (jJ) animals. Four groups of rats (n = 7) were studied: jj and jJ rats treated either with aspirin 300 mg/kg every other day or sham-treated. After one week, slices of cortex, outer and inner medulla from one kidney were incubated in buffer and prostaglandin synthesis was determined by radioimmunoassay. The other kidney was examined histologically. A marked corticomedullary gradient of prostaglandin synthesis was observed in all groups. PGE2 synthesis was significantly higher in outer medulla, but not cortex or inner medulla, of jj (38 +/- 6 ng/mg prot) than jJ rats (15 +/- 3) (p less than 0.01). Aspirin treatment reduced PGE2 synthesis in all regions, but outer medullary PGE2 remained higher in jj (18 +/- 3) than jJ rats (9 +/- 2) (p less than 0.05). PGF2 alpha was also significantly higher in the outer medulla of jj rats with and without aspirin administration (p less than 0.05). The changes in renal prostaglandin synthesis were accompanied by evidence of renal damage in aspirin-treated jj but not jJ rats as evidenced by: increased incidence and severity of hematuria (p less than 0.01); increased serum creatinine (p less than 0.05); and increase in outer medullary histopathologic lesions (p less than 0.005 compared to either sham-treated jj or aspirin-treated jJ). These results suggest that enhanced prostaglandin synthesis contributes to maintenance of renal function and morphological integrity, and that inhibition of prostaglandin synthesis may lead to pathological renal medullary lesions and deterioration of renal function.  相似文献   

6.
Regional localization of the exaggerated prostaglandin E2 (PGE2) synthesis caused by hydronephrosis was studied in unilateral ureteral ligated rabbits. The renal distribution of PGE2 production was compared in the hydronephrotic and contralateral kidneys. Basal and bradykinin-stimulated PGE2 synthesis were increased in cortical and medullary slices of the hydronephrotic kidneys. Contralateral (control) cortical slices produced very low levels of PGE2 and were insensitive to stimulation by bradykinin (BK). The hydronephrotic cortex produced 10 times more PGE2 than the contralateral cortex and responded to BK stimulation with increased PGE2 synthesis. Cortical slices from the hydronephrotic kidney exhibited a time-dependent increase in PGE2 release, presumably as a result of new protein synthesis. The division of the hydronephrotic cortex into outer and inner regions revealed that the inner cortex produced more PGE2 than the outer cortex. A similar division of the hydronephrotic medulla showed that the inner medulla produced slightly greater amounts of PGE2 than the outer medulla. The present study demonstrates that hydronephrosis causes increases in prostaglandin synthesis throughout the kidney. We suggest from these results and other studies that a possible explanation for this finding is the involvement of the collecting duct system in this response. The gradient of PGE2 production detected in the cortex may have a very significant role in the control of renal hemodynamics and could provide an explanation for the large decrease in blood flow to the inner cortex caused by indomethacin treatment.  相似文献   

7.
Distribution of platelet activating factor (PAF) receptor was examined in the guinea pig kidney. Northern blot analysis showed a single band electrophoresed just below the 28S rRNA, and the mRNA was richest in the cortex with lesser amounts in the outer and then inner medulla. Scatchard analysis of membrane fraction using [3H]WEB 2086, a specific PAF receptor antagonist, revealed a single binding site with Bmax of 522, 228, 58 fmol/mg protein for the cortex, outer medulla and inner medulla, respectively. Kd values were in the same order of magnitude (10(-8) M). These results indicate the presence of a single class of PAF receptor in the guinea pig kidney which is most abundant in the cortex.  相似文献   

8.
We examined the potential role of prostaglandins in the development of analgesic nephropathy in the Gunn strain of rat. The homozygous Gunn rats have unconjugated hyperbilirubinemia due to the abscence of glucuronyl transferase, leading to marked bilirubin deposition in renal medulla and papilla. These rats are also highly susceptible to develop papillary necrosis with analgesic administration.We used homozygous (jj) and phenotypically normal heterozygous )jJ) animals. Four groups of rats (n = 7) were studied: jj and jJ rats treated either with aspirin 300 mg/kg every other day or sham-treated. After one week, slices of cortex, outer and inner medulla from one kidney wre incubated in buffer and prostaglandin synthesis was determined by radioimmunoassay. The other kidney was examined histologically.A marked corticomedullary gradient of prostaglandin synthesis was observed in all groups, PGE2 synthesis was significantly higher in outer medulla, but not cortex or inner medulla, of jj (38 ± 6 mg/mg prot) than jJ rats (15 ± 3) (p<0.01). Aspirin treatment reduced PGE2 synthesis in all regions, but outer medullary PGE2 remained higher in jj (18 ± 3) than jJ rats (9 ± 2) (p<0.05). PGE2α was also significantly higher in the outer medulla of jj rats with and without aspirin administration (p<0.05). The changes in renal prostaglandin synthesis were accompanied by evidence of renal damage in aspirin-treated jj but not jJ rats as evidenced by: increased incidence and severity of hematuria (p<0.01); increased serum creatinine (p<0.05); and increase in outer medullary histopathologic lesions (p<0.005 compared to either sham-treated jj or aspirin-treated jJ).These results suggest that enhanced protaglandin synthesis contributes to maintenance of renal function and morphological integrity, and that inhibition of protaglandin synthesis may lead to pathological renal medullary lesions and deterioration of renal function.  相似文献   

9.
Final steps in the synthesis of platelet activating factor (PAF) occur via two enzymatic reactions: the acetylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine by a specific acetyltransferase or the transfer of the phosphocholine base group from CDP-choline to 1-alkyl-2-acetyl-sn-glycerol by a dithiothreitol (DTT)-insensitive cholinephosphotransferase. Our studies demonstrate that rat kidney inner medulla microsomes synthesize PAF primarily via the DTT-insensitive cholinephosphotransferase since the specific activity of this enzyme is greater than 100-fold higher than the acetyltransferase. The two cholinephosphotransferases that catalyze the biosynthesis of phosphatidylcholine and PAF have similar Mg2+ or Mn2+ requirements and are inhibited by Ca2+. Also topographic experiments indicated that both activities are located on the cytoplasmic face of microsomal vesicles. PAF synthesis was slightly stimulated by 10 mM DTT, whereas the enzymatic synthesis of phosphatidylcholine was inhibited greater than 95% under the same conditions. The concept of two separate enzymes for PAF and phosphatidylcholine synthesis is further substantiated by the differences in the two microsomal cholinephosphotransferase activities with respect to pH optima, substrate specificities, and their sensitivities to temperature, deoxycholate, or ethanol. Study of the substrate specificities of the DTT-insensitive cholinephosphotransferase showed that the enzyme prefers a lipid substrate with 16:0 or 18:1 sn-1-alkyl chains. Short chain esters at the sn-2 position (acetate or propionate) are utilized by the DTT-insensitive cholinephosphotransferase, but analogs with acetamide or methoxy substituents at the sn-2 position are not substrates. Also, CDP-choline is the preferred water-soluble substrate when compared to CDP-ethanolamine. Utilization of endogenous neutral lipids as a substrate by the DTT-insensitive cholinephosphotransferase demonstrated that sufficient levels of alkylacetylglycerols are normally present in rat kidney microsomes to permit the synthesis of physiological quantities of PAF. These data suggest the renal DTT-insensitive cholinephosphotransferase could be a potentially important enzyme in the regulation of systemic blood pressure.  相似文献   

10.
In this review, evidence is summarized for the production of PAF in brain, in response to stimulation associated with pathology. As well, there is a growing literature on the duality of actions of this lipid autocoid upon nervous tissue, indicated by extracellular and intracellular actions and binding sites for PAF in brain. The metabolic routes to PAF can be divided into the de novo and remodelling pathways of synthesis. The de novo route consists of 1-alkyl glycerophosphate acetyltransferase, and the subsequent actions of distinct phosphohydrolase and cholinephosphotransferase activities. This acetyltransferase can be activated by phosphorylation, and inhibited by MgATP and fatty acyl CoA thioesters, inhibitions which have particular relevance to brain ischemia. There is also evidence that the cholinephosphotransferase is controlled by phosphorylation, and regulated by levels of CDP-choline. The remodelling pathway to PAF relies upon the actions of phospholipase A2 or CoA-independent transacylases to generate the l-alkyl glycerophosphorylcholine, as substrate for a distinct acetyltransferase. Following stimulation, rising intracellular calcium may trigger arachidonate selective cytosolic phospholipase activity which leads to increased PAF synthesis. The l-alkyl glycerophosphocholine acetyltransferase activity is quite small in brain in comparison with the de novo acetyltransferase activity, and is also controlled by phosphorylation. Evidence has been presented for the actions of both pathways in brain, in response to biologically relevant stimulation pertinent to the disease state.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

11.
Papillary necrosis was observed in the kidneys of rats, 72 h after receiving a single injection of bromoethylamine (BEA). This effect was associated with renal glutathione (GSH) depletion 1 h after the administration of BEA. Stimulation of renal GSH synthesis by pretreatment of the animals either with glutamine + glycine + cystine or N-acetyl-L-cysteine was attempted. Low doses of these precursors administered previously to BEA, respectively, decreased or abolished the GSH depletion. Nevertheless, both pretreatments failed to modify the magnitude of renal papillary necrosis. High doses of these precursors did not modify the BEA-induced GSH depletion, but they significantly increased GSH levels 24 h after BEA administration. At this time, although a smaller intensity of renal papillary necrosis was observed with the amino acid mixture pretreatment, N-acetyl-L-cysteine pretreated rats showed no papillary necrosis. It is suggested that the observed protective effects against BEA-induced renal papillary injury may be ascribed in some measure, to a mechanism independent of GSH.  相似文献   

12.
Endogenous noradrenaline and 3,4-dihydroxyphenylethylamine (dopamine) levels were measured in different zones of the dog kidney following chronic unilateral renal denervation. In outer and inner renal cortex, and in outer medulla, greater than 95% of the tissue content of both catecholamines was contributed by renal nerves, whereas in inner medulla only nonneuronal catecholamines were found. The amounts of neuronal dopamine present in outer renal cortex were greater than would be expected for a population of solely noradrenergic nerves.  相似文献   

13.
Intrarenal blood flow distribution was studied with the simultaneous use of the 99Tc labelled frog erythrocyte (microsphere) and the radioactive 86Rb fractionation method in the rat. The amount of blood entering the outer cortex (99Tc labelled erythrocytes method) proved to be higher than one perfusing the outer cortex (86Rb method), whereas the amount of blood entering the inner cortex (99Tc method) was less than the amount perfusing the inner cortex and medulla (86Rb method). Hence a group of the preglomerular arterioles in the outer cortex contributes to the blood supply of the inner cortex, on the other hand a group of preglomerular arteries in the inner cortex participates in the postglomerular blood supply of the medulla. Changes in the renal circulation are, however, associated with altered distribution of postglomerular vascular segments supplied by some groups of preglomerular arterioles. From this it is concluded that the postglomerular vessels of the deeper cortical layers constitute a system which is not parallelly coupled but comprises both series- and parallel-coupled sections. The contribution of these sections appears to vary depending on the actual haemodynamic conditions.  相似文献   

14.
Human endothelial cells synthesize large amounts of platelet-activating factor (PAF) after 30-min treatment with recombinant tumor necrosis factor (TNF). Synthesis of PAF peaks at 4-6 h, whereas in endothelial cells treated with interleukin 1 alpha (IL-1) it peaks at 8-12 h. More than twice as much PAF is synthesized in response to optimal concentrations of TNF than in response to IL-1. However, PAF synthesis is stimulated by lower molar concentrations of IL-1 than TNF. About 30% of PAF produced in response to either TNF or IL-1 is released into the medium, whereas approximately 70% remains cell-associated. Experiments with labeled precursors show that PAF is synthesized de novo in response to TNF. This activity of TNF is inhibited by treating endothelial cells with the inhibitors of protein or RNA synthesis cycloheximide or actinomycin D. This finding may be explained by the observation that TNF induces in endothelial cells an acetyltransferase required for PAF synthesis. The induction of this enzymatic activity precedes the peak of PAF synthesis in TNF-treated cells. After prolonged incubation with either TNF or IL-1, endothelial cells no longer respond to the same monokine, but are still capable of producing PAF when treated with the other monokine. The finding that these monokines do not show reciprocal tachyphylaxis in endothelial cells may be explained by their binding to different receptors. In cells treated simultaneously with different concentrations of TNF and IL-1, PAF synthesis is stimulated in an additive rather than synergistic way. This suggests that PAF is synthesized by the same pathway in response to TNF or IL-1.  相似文献   

15.
We have established previously that 1-alkyl-2-acetyl-sn-glycerol (alkylacetyl-G) can be converted into at least six metabolites by rabbit platelets, including alkylacetyl-sn-(glycero-3-phosphocholine) (-GPC), i.e. platelet-activating factor (PAF) and 1-alkyl-2-acyl-sn- (alkylacyl)-GPC. Since part of the biological functions of alkylacetyl-G can be explained by its metabolic conversion to PAF and also to alkylacyl-GPC as an inactive storage precursor of PAF, the present study focused on the regulation of the synthesis of PAF and alkylacyl-GPC from alkylacetyl-G. Our results document the presence of a specific dithiothreitol (DTT)-insensitive cholinephosphotransferase in saponin-permeabilized rabbit platelets and show that DTT potentiates the production of PAF from alkylacetyl-G but inhibits the formation of phosphatidylcholine from diolein. We also demonstrated that the availability of CDP-choline controls the generation of PAF from alkylacetyl-G. Furthermore, when CTP: phosphocholine cytidylyltransferase is activated to produce more CDP-choline through the translocation of this enzyme from the cytosol to membranes by incubating the rabbit platelets with 0.2 mM sodium oleate, the production of PAF from alkylacetyl-G is increased 5-fold. More importantly, our experiments reveal the presence of two metabolic pathways that are responsible for the synthesis of alkylacyl-GPC from alkylacetyl-G, with each producing a unique molecular species composition of the stored PAF precursor, alkylacyl-GPC. The latter is enriched in polyunsaturates (70.7-78.5% 20:4) when formed through the remodeling pathway of PAF cycle via alkylacetyl-G (DTT-insensitive cholinephosphotransferase)----alkylacetyl-GPC----alkyllyso-GPC---- alkylacyl-GPC . Alkylacyl-GPC containing saturated species (71.8% 16:0) is generated by the retroconversion/de novo pathway according to the reaction scheme of alkylacetyl-G----alkyl-G----alkyllyso-glycero-3-phosphate (-GP)----alkylacyl-GP----alkylacyl-G (DTT-sensitive cholinephosphotransferase)----alkylacyl-GPC. Inactivation of PAF through the remodeling/PAF cycle can generate alkylacyl-GPC at both low (1.75 x 10(-7) M) and high (10(-6) M) concentrations of PAF whereas the conversion of alkylacetyl-G to alkylacyl-GPC via PAF through the remodeling pathway only occurs at a low concentration (1.75 x 10(-7) M). At a high concentration (10(-6) M), alkylacetyl-G is converted to alkylacyl-GPC via the retroconversion/de novo route. These data suggest that the formation of PAF by the DTT-insensitive cholinephosphotransferase activity limits the amounts of alkylacyl-GPC produced from alkylacetyl-G through this remodeling pathway (PAF cycle).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
2 bromoethanamine hydrobromide (BEA) has been widely considered to be a target selective nephrotoxin that causes necrosis of the medulla in 24-48 h, but recent reports suggest that early cortical injury is also associated with this lesion. In order to assess the cortical effects of BEA (100 mg kg-1 bw single ip injection), several urinary markers of renal injury were evaluated over a 7 day period in male Wistar Albino rats. Hexachlorobutadiene (HCBD 150 mg kg-1 bw in peanut oil ip), a renal toxin which targets selectively for the proximal tubule, was used as a comparison. After BEA treatment, urinary levels of alanine aminopeptidase, gamma-glutamyl-transpeptidase, alkaline phosphatase and glucose increased transiently. Each of the proximal tubule marker enzymes peaked earlier following HCBD treatment and elevation of alanine aminopeptidase and gamma glutamyl transpeptidase was sustained for longer periods than for BEA. Following BEA treatment, lactate dehydrogenase rose prominently on day 1 followed by a return to control values on day 2 and a further rise on day 3 and remained high until the end of the study. BEA also increased the urinary excretion of total protein and albumin. After HCBD treatment, lactate dehydrogenase showed a transient elevation and glucose levels were slightly increased. Based on the present observations the changes induced by BEA administration on urinary markers of renal injury are different from those observed following HCBD treatment. These findings suggest that BEA toxicity also involves other parts of the kidney besides the papilla.  相似文献   

17.
Experiments were performed to determine whether L-arginine transport regulates nitric oxide (NO) production and hemodynamics in the renal medulla. The effects of renal medullary interstitial infusion of cationic amino acids, which compete with L-arginine for cellular uptake, on NO levels and blood flow in the medulla were examined in anesthetized rats. NO concentration in the renal inner medulla, measured with a microdialysis-oxyhemoglobin trapping technique, was significantly decreased by 26-44% and renal medullary blood flow, measured by laser Doppler flowmetry, was significantly reduced by 20-24% during the acute renal medullary interstitial infusion of L-ornithine, L-lysine, and L-homoarginine (1 micromol.kg(-1).min(-1) each; n = 6-8/group). In contrast, intramedullary infusion of L-arginine increased NO concentration and medullary blood flow. Flow cytometry experiments with 4-amino-5-methylamino-2',7'-difluorescein diacetate, a fluorophore reactive to intracellular NO, demonstrated that L-ornithine, L-lysine, and L-homoarginine decreased NO by 54-57% of control, whereas L-arginine increased NO by 21% in freshly isolated inner medullary cells (1 mmol/l each, n > 1,000 cells/experiment). The mRNA for the cationic amino acid transporter-1 was predominantly expressed in the inner medulla, and cationic amino acid transporter-1 protein was localized by immunohistochemistry to the collecting ducts and vasa recta in the inner medulla. These results suggest that L-arginine transport by cationic amino acid transport mechanisms is important in the production of NO and maintenance of blood flow in the renal medulla.  相似文献   

18.
Regional distribution of angiotensin converting enzyme(ACE) in the rat kidney was studied. The ACE activities in the inner cortex and outer medulla were about 10 and 5 times those in the outer cortex, respectively. The activity in the inner medulla or papilla was much the same as that in the outer cortex. Immunofluorescence was greatest in the proximal tubules in the inner cortex, while the outer medulla and the inner medulla or papilla showed a weak fluorescence. The brush border membranes isolated from the inner cortex also possessed about 10 times the ACE activity seen in the outer cortex. The results indicate that the major source of renal ACE is not the proximal convoluted tubules in the outer cortex, but rather the brush border membranes of proximal tubules in the inner cortex. The contribution of ACE in the inner cortex would therefore be predominant.  相似文献   

19.
2 bromoethanamine hydrobromide (BEA) has been widely considered to be a target selective nephrotoxin that causes necrosis of the medulla in 24-48 h, but recent reports suggest that early cortical injury is also associated with this lesion. In order to assess the cortical effects of BEA (100 mg kg-1 bw single ip injection), several urinary markers of renal injury were evaluated over a 7 day period in male Wistar Albino rats. Hexachlorobutadiene (HCBD 150 mg kg-1 bw in peanut oil ip), a renal toxin which targets selectively for the proximal tubule, was used as a comparison. After BEA treatment, urinary levels of alanine aminopeptidase, gamma-glutamyl-transpeptidase, alkaline phosphatase and glucose increased transiently. Each of the proximal tubule marker enzymes peaked earlier following HCBD treatment and elevation of alanine aminopeptidase and gamma glutamyl transpeptidase was sustained for longer periods than for BEA. Following BEA treatment, lactate dehydrogenase rose prominently on day 1 followed by a return to control values on day 2 and a further rise on day 3 and remained high until the end of the study. BEA also increased the urinary excretion of total protein and albumin. After HCBD treatment, lactate dehydrogenase showed a transient elevation and glucose levels were slightly increased. Based on the present observations the changes induced by BEA administration on urinary markers of renal injury are different from those observed following HCBD treatment. These findings suggest that BEA toxicity also involves other parts of the kidney besides the papilla.  相似文献   

20.
The role of nitric oxide (NO) produced by NO synthase 1 (NOS1) in the renal vasculature remains undetermined. In the present study, we investigated the influence of systemic inhibition of NOS1 by intravenous administration of N(omega)-propyl-L-arginine (L-NPA; 1 mg. kg(-1). h(-1)) and N(5)-(1-imino-3-butenyl)-L-ornithine (v-NIO; 1 mg. kg(-1). h(-1)), highly selective NOS1 inhibitors, on renal cortical and medullary blood flow and interstitial NO concentration in Sprague-Dawley rats. Arterial blood pressure was significantly decreased by administration of both NOS1-selective inhibitors (-11 +/- 1 mmHg with L-NPA and -7 +/- 1 mmHg with v-NIO; n = 9/group). Laser-Doppler flowmetry experiments demonstrated that blood flow in the renal cortex and medulla was not significantly altered following administration of either NOS1-selective inhibitor. In contrast, the renal interstitial level of NO assessed by an in vivo microdialysis oxyhemoglobin-trapping technique was significantly decreased in both the renal cortex (by 36-42%) and medulla (by 32-40%) following administration of L-NPA (n = 8) or v-NIO (n = 8). Subsequent infusion of the nonspecific NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 50 mg. kg(-1). h(-1)) to rats pretreated with either of the NOS1-selective inhibitors significantly increased mean arterial pressure by 38-45 mmHg and significantly decreased cortical (25-29%) and medullary (37-43%) blood flow. In addition, L-NAME further decreased NO in the renal cortex (73-77%) and medulla (62-71%). To determine if a 40% decrease in NO could alter renal blood flow, a lower dose of L-NAME (5 mg. kg(-1). h(-1); n = 8) was administered to a separate group of rats. The low dose of L-NAME reduced interstitial NO (cortex 39%, medulla 38%) and significantly decreased blood flow (cortex 23-24%, medulla 31-33%). These results suggest that NOS1 does not regulate basal blood flow in the renal cortex or medulla, despite the observation that a considerable portion of NO in the renal interstitial space appears to be produced by NOS1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号