首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.— Most theoretical work on the evolution of senescence has assumed that all individuals within a population are equally susceptible to extrinsic sources of mortality. An influential qualitative prediction based on this assumption is Williams's hypothesis, which states that more rapid senescence is expected to evolve when the magnitude of such extrinsic mortality sources is increased. Much evidence suggests, however, that for many groups of organisms externally imposed mortality risk is a function of an organism's internal condition and hence susceptibility to such hazards. Here we use a model of antagonistic pleiotropy to investigate the consequences that such interactions (between environmental hazard and internal condition) can have for Williams's hypothesis. As with some previous theory examining nonin-teractive extrinsic mortality sources, we find that an increase in interactive extrinsic sources of mortality makes it less likely that an individual will survive from birth to any given age, weakening selection against physiological deterioration at all ages and thus favoring more rapid senescence. However, an increase in interactive mortality sources also typically strengthens selection against physiological deterioration at any age, given an individual has survived to that age, because it reduces the fitness of poor-condition individuals more than good-condition individuals. These opposing effects are not felt equally at all ages, with the latter predominating at early ages. The combined effects can therefore result in the novel prediction that an increase in interactive extrinsic mortality sources can select for slower senescent deterioration early in life but more rapid deterioration late in life.  相似文献   

2.
G.C. Williams's 1957 hypothesis famously argues that higher age-independent, or "extrinsic," mortality should select for faster rates of senescence. Long-lived species should therefore show relatively few deaths from extrinsic causes such as predation and starvation. Theoretical explorations and empirical tests of Williams's hypothesis have flourished in the past decade but it has not yet been tested empirically among humans. We test Williams's hypothesis using mortality data from subsistence populations and from historical cohorts from Sweden and England/Wales, and examine whether rates of actuarial aging declined over the past two centuries. We employ three aging measures: mortality rate doubling time (MRDT), Ricklefs's ω, and the slope of mortality hazard from ages 60–70, m '60–70, and model mortality using both Weibull and Gompertz–Makeham hazard models. We find that (1) actuarial aging in subsistence societies is similar to that of early Europe, (2) actuarial senescence has slowed in later European cohorts, (3) reductions in extrinsic mortality associate with slower actuarial aging in longitudinal samples, and (4) men senesce more rapidly than women, especially in later cohorts. To interpret these results, we attempt to bridge population-based evolutionary analysis with individual-level proximate mechanisms.  相似文献   

3.
The Escherichia coli structural gene for alkaline phosphatase was inserted into Salmonella typhimurium by episomal transfer in order to determine whether this enzyme would continue to be localized to the periplasmic space of the bacterium even though it was formed in a cell that does not synthesize alkaline phosphatase. The S. typhimurium heterogenote synthesized alkaline phosphatase under conditions identical to that observed with E. coli. This enzyme appeared to be identical to that synthesized by E. coli, and was quantitatively released from the bacterial cell by spheroplast formation with lysozyme. These results showed that localization is not a property unique to the E. coli cell and suggested that, in E. coli, enzyme location is related to the structure of the protein. Formation of alkaline phosphatase in the S. typhimurium heterogenote was repressed in cells growing in a medium with excess inorganic phosphate, even though only one of the three regulatory genes for this enzyme is on the episome. Thus, S. typhimurium can supply the products of the other two regulatory genes essential for repression even though this bacterium seems to lack the structural gene for alkaline phosphatase.  相似文献   

4.
Nonculturable bacteria: programmed survival forms or cells at death's door?   总被引:8,自引:0,他引:8  
Upon starvation and growth arrest, Escherichia coli cells gradually lose their ability to reproduce. These apparently sterile/nonculturable cells initially remain intact and metabolically active and the underlying molecular mechanism behind this sterility is something of an enigma in bacteriology. Three different models have been proposed to explain this phenomenon. The first theory suggests that starving cells become nonculturable due to cellular deterioration, are moribund, and show some of the same signs of senescence as aging organisms. The two other theories suggest that genetically programmed pathways, rather than stochastic deterioration, trigger nonculturability. One "program" theory suggests that nonculturability is the culmination of an adaptive pathway generating dormant survival forms, similar to spore formation in differentiating bacteria. The other "program" theory states that starved cells lose viability due to activation of genetic modules mediating programmed cell death. The different models will be reviewed and evaluated in light of recent data on the physiology and molecular biology of growth-arrested E. coli cells.  相似文献   

5.
An experiment was carried out to investigate stomatal responsesin wheat to four ‘closing treatments’, viz. highcarbon dioxide concentration, darkness, dry air and nil, eachgiven under both aerobic and anaerobic conditions. Thus theeffect of lack of oxygen on the closing (or opening) tendencywas estimated. Changes in calculated from resistance porometer readings were used as data and reasonsare given for thinking this is the best available measure forinvestigating stomatal dynamics in wheat. Williams's hypothesisdemands that lack of oxygen should cause stomatal opening orprevent closure; the present experiment shows that anaerobicconditions significantly increase the closing tendency when‘closing treatments’ are first applied. There isalso some suggestion that oxygen-lack itself tends to causeclosure in the absence of any other ‘closing treatment’.Williams's hypothesis in its original form is thus disproved(for wheat) but the present results would be consistent withan ‘active’ uptake of water by the guard cells contributingto stomatal opening. A nearly significant interaction betweencarbon dioxide and oxygen suggests that under anaerobic conditionsa ‘closing substance’ may perhaps be formed, forexample, by the union of some intermediate in glycolysis withcarbon dioxide.  相似文献   

6.
A number of regulatory networks are functionally integrated in starving cells of Escherichia coli to reduce oxidation of target macromolecules and to enhance the cell's ability to withstand environmental insults. However, despite the fact that starving wild-type E. coli cells enhance their capacity to manage oxidative stress, the proteins of these cells become increasingly oxidized and the cells gradually lose their ability to reproduce. Indeed, it has been argued that starved and growth-arrested bacterial cells show the same signs of senescence as aging cells of higher organisms and that free radicals may be involved in the gradual loss of bacterial culturability observed in a stationary phase culture. Another model suggests that the apparent loss of viability of starved cells is a programmed and adaptive response in which the cells enter a reversible non-culturable state; the theory of the formation of viable but non-culturable cells. Recent data concerning the physiology and biochemistry of starved E. coli cells favor the model that starvation-induced loss of culturability is the result of stochastic deterioration rather than a programmed and adaptive phenomenon, and these data will be reviewed here.  相似文献   

7.
The sequence of two enterohaemorrhagic Escherichia coli (EHEC) O157:H7 strains reveals the possession of at least 16 fimbrial gene clusters, many of the chaperone/usher class. The first part of this study examined the distribution of these clusters in a selection of EHEC/EPEC (enteropathogenic E. coli) serotypes to determine if any were likely to be unique to E. coli O157:H7. Six of the clusters, as determined by the presence of amplified main subunit or usher gene sequences, were detected only in the E. coli O157 and O145 serotypes tested. With the exception of one serotype O103 strain that contained an lpf2 cluster, lpf sequences were only detected in E. coli O157 of the serotypes tested. Expression from each cluster was measured by the construction of chromosomally integrated lacZ promoter fusions and plasmid-based eGFP fusions in E. coli O157:H7. This analysis demonstrated that the majority (11/15) of main fimbrial subunit genes were not expressed under the majority of conditions tested in vitro. One of the clusters showing promoter activity, loc8, has a temperature expression optimum indicating a possible role outside the host. From the presence of pseudogenes in three of the clusters, the lack of FimH-like minor adhesins in the clusters and their limited expression in vitro, it would appear that E. coli O157:H7 has a limited repertoire of expressed functional fimbriae. This restricted selection of fimbriae may be important in bringing about the tropism E. coli O157:H7 demonstrates for the terminal rectum of cattle.  相似文献   

8.
The dha regulon of Klebsiella pneumoniae specifying fermentative dissimilation of glycerol was mobilized by the broad-host-range plasmid RP4:mini Mu and introduced conjugatively into Escherichia coli. The recipient E. coli was enabled to grow anaerobically on glycerol without added hydrogen acceptors, although its cell yield was less than that of K. pneumoniae. The reduced cell yield was probably due to the lack of the coenzyme-B12-dependent glycerol dehydratase of the dha system. This enzyme initiates the first step in an auxiliary pathway for disposal of the extra reducing equivalents from glycerol. The lack of this enzyme would also account for the absence of 1,3-propanediol (a hallmark fermentation product of glycerol) in the spent culture medium. In a control experiment, a large quantity of this compound was detected in a similar culture medium following the growth of K. pneumoniae. The other three known enzymes of the dha system, glycerol dehydrogenase, dihydroxyacetone kinase and 1,3-propanediol oxidoreductase, however, were synthesized at levels comparable to those found in K. pneumoniae. Regulation of the dha system in E. coli appeared to follow the same pattern as in K. pneumoniae: the three acquired enzymes were induced by glycerol, catabolite repressed by glucose, and glycerol dehydrogenase was post-translationally inactivated during the shift from anaerobic to aerobic growth. The means by which the E. coli recipient can achieve redox balance without formation of 1,3-propanediol during anaerobic growth on glycerol remains to be discovered.  相似文献   

9.
10.
Deletion of the penicillin-binding protein 5 gene of Escherichia coli.   总被引:13,自引:10,他引:3       下载免费PDF全文
A strain of Escherichia coli that has a deletion of the entire dacA gene has been constructed. The complete lack of penicillin-binding protein 5 in this strain establishes that the activity of this protein is not essential for the growth of E. coli.  相似文献   

11.
Study of many of the interesting properties of Klebsiella aerogenes is limited by the lack of a well-characterized genetic system for this organism. Our investigations of the evolution of the enzyme ribitol dehydrogenase (EC 1.1.1.56) in K. aerogenes would be greatly facilitated by the availability of such a system, and we here report two approaches to developing one. We have isolated mutants sensitive to the coliphage P1, which will efficiently tranduce genetic markers between such sensitive strains and which will thus make detailed mapping studies possible. Derivatives of K. aerogenes lysogenic for P1 can be readily isolated by using the specialized transducing particle P1CMclr100. Bacteria lysogenic for this phage are chloramphenicol resistant and temperature sensitive. Phage particles produced by temperature induction of such lysogens can be used to transfer K. aerogenes genes to the natural host of P1 phage. Escherichia coli. We have used this method to prepare derivatives of E. coli K-12 carrying the K. aerogenes genes conferring the ability to metabolize the pentitols ribitol and D-arabitol. We have shown that these E. coli-K. aerogenes hybrids synthesize a ribitol dehydrogenase with the properties of the K. aerogenes enzyme and have mapped the position of the transferred gene on the E. coli chromosome. The ramifications of this methodology are discussed.  相似文献   

12.
Removal of negative superhelical turns in ColE1 plasmid DNA by Escherichia coli topoisomerase I was markedly enhanced by the presence of single-stranded DNA binding protein from E. coli. A lack of species specificity makes unlikely the possibility of physical association between topoisomerase I and single-stranded DNA binding proteins. Stabilization of single-stranded regions in supercoiled DNA by single-stranded DNA binding protein would appear to be the basis of the enhancement of topoisomerase activity.  相似文献   

13.
14.
The purpose of the study was to characterize fermentation of sucrose by Escherichia coli strains and to answer why some of these strains doesn't utilize this disaccharide. Investigations included 16 E. coli strains. Only 5 of these strains utilized sucrose. Genotypic analysis demonstrated the presence of cscB gene (encoding the sucrase permease which catalyzes transport of sucrose through the plasma membrane of the cell) in 5 strains of E. coli and cscA gene (encoding an enzyme sucrase that catalyzes the utilization of sucrose) in 6 strains of E. coli. These 5 of E. coli strains which possessed a chromosomally encoded sucrose metabolic pathway utilized sucrose with a different time. 3 of them destroyed this disaccharide after 24 h and 2 of them destroyed it after 48 h. Ten of E. coli strains hadn't cscA gene and 11 of them had not cscB genes. The lack of these genes can be the prove that it is not possible for 11 of E. coli strains to synthesize sucrose permease and for 10 of them to synthesize sucrase and it may be the reason of not utilize disaccharide sucrose by these bacteria.  相似文献   

15.
Senescence is a universal but poorly understood phenomenon among metazoans. One theoretically convincing but unproven evolutionary theory of senescence is the pleitropic gene theory of Williams (1957). This paper develops the hypothesis that some human genetic diseases exemplify the type of phenotypic effects predicted by this theory. The evidence supporting this contention is reviewed and ways of testing this hypothesis are suggested. Other human genetic diseases could be examined in the same manner. Confirmation of this theory would have significant implications for the study of aging.  相似文献   

16.
17.
18.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

19.
The role of nucleotide excision repair and 3-methyladenine DNA glycosylases in removing cytotoxic lesions induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in Salmonella typhimurium and Escherichia coli cells was examined. Compared to the E. coli wild-type strain, the S. typhimurium wild-type strain was more sensitive to the same dose of MNNG. Nucleotide excision repair in both bacterial species does not contribute significantly to the survival after MNNG treatment, indicating that the observed differences in survival between S. typhimurium and E. coli should be attributed to DNA-repair systems other than nucleotide excision repair. The survival of the E. coli alkA mutant strain is seriously affected by the lack of 3-methyladenine DNA glycosylase II, accentuating the importance of this DNA-repair enzyme in protecting E. coli cells against the lethal effects of methylating agents. Following indications from our experiments, the existence of an alkA gene analogue in S. typhimurium has been questioned. Dot-blot hybridisation, using the E. coli alkA gene as a probe, was performed, and such a nucleotide sequence was not detected on S. typhimurium genomic DNA. The existence of constitutive 3-methyladenine DNA glycosylase, analogous to the E. coli Tag gene product in S. typhimurium cells, suggested by the results is discussed.  相似文献   

20.
In Escherichia coli, the exoribonuclease polynucleotide phosphorylase (PNPase), the endoribonuclease RNase E, a DEAD-RNA helicase and the glycolytic enzyme enolase are associated with a high molecular weight complex, the degradosome. This complex has an important role in processing and degradation of RNA. Chloroplasts contain an exoribonuclease homologous to E. coli PNPase. Size exclusion chromatography revealed that chloroplast PNPase elutes as a 580-600 kDa complex, suggesting that it can form an enzyme complex similar to the E. coli degradosome. Biochemical and mass-spectrometric analysis showed, however, that PNPase is the only protein associated with the 580-600 kDa complex. Similarly, a purified recombinant chloroplast PNPase also eluted as a 580-600 kDa complex after gel filtration chromatography. These results suggest that chloroplast PNPase exists as a homo-multimer complex. No other chloroplast proteins were found to associate with chloroplast PNPase during affinity chromatography. Database analysis of proteins homologous to E. coli RNase E revealed that chloroplast and cyanobacterial proteins lack the C-terminal domain of the E. coli protein that is involved in assembly of the degradosome. Together, our results suggest that PNPase does not form a degradosome-like complex in the chloroplast. Thus, RNA processing and degradation in this organelle differ in several respects from those in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号