共查询到14条相似文献,搜索用时 0 毫秒
1.
BRUCE A. KIMBALL MATTHEW M. CONLEY SHIPING WANG† XINGWU LIN† CAIYUN LUO† JACK MORGAN‡ DAVID SMITH‡ 《Global Change Biology》2008,14(2):309-320
There is a need for methodology to warm open‐field plots in order to study the likely effects of global warming on ecosystems in the future. Herein, we describe the development of arrays of more powerful and efficient infrared heaters with ceramic heating elements. By tilting the heaters at 45° from horizontal and combining six of them in a hexagonal array, good uniformity of warming was achieved across 3‐m‐diameter plots. Moreover, there do not appear to be obstacles (other than financial) to scaling to larger plots. The efficiency [ηh (%); thermal radiation out per electrical energy in] of these heaters was higher than that of the heaters used in most previous infrared heater experiments and can be described by: ηh= 10 + 25exp(? 0.17 u), where u is wind speed at 2 m height (m s? 1). Graphs are presented to estimate operating costs from degrees of warming, two types of plant canopy, and site windiness. Four such arrays were deployed over plots of grass at Haibei, Qinghai, China and another at Cheyenne, Wyoming, USA, along with corresponding reference plots with dummy heaters. Proportional integral derivative systems with infrared thermometers to sense canopy temperatures of the heated and reference plots were used to control the heater outputs. Over month‐long periods at both sites, about 75% of canopy temperature observations were within 0.5 °C of the set‐point temperature differences between heated and reference plots. Electrical power consumption per 3‐m‐diameter plot averaged 58 and 80 kW h day? 1 for Haibei and Cheyenne, respectively. However, the desired temperature differences were set lower at Haibei (1.2 °C daytime, 1.7 °C night) than Cheyenne (1.5 °C daytime, 3.0 °C night), and Cheyenne is a windier site. Thus, we conclude that these hexagonal arrays of ceramic infrared heaters can be a successful temperature free‐air‐controlled enhancement (T‐FACE) system for warming ecosystem field plots. 相似文献
2.
GERARD W. WALL BRUCE A. KIMBALL JEFFREY W. WHITE MICHAEL J. OTTMAN 《Global Change Biology》2011,17(6):2113-2133
Gas exchange and water relations were evaluated under full‐season in situ infrared (IR) warming for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the southwest USA. A temperature free‐air controlled enhancement (T‐FACE) apparatus utilizing IR heaters maintained canopy air temperature above 3.0 m Heated plots of wheat by 1.3 and 2.7 °C (0.2 and 0.3 °C below the targeted set‐points of Reference plots with dummy heaters) during daytime and nighttime, respectively. Control plots had no apparatus. Every 6 weeks during 2007–2009 wheat was sown under the three warming treatments (i.e., Control, Heated, Reference) in three replicates in a 3 × 3 Latin square (LSQ) design on six plantings during 4 months (i.e., January, March, September, December), or in a natural temperature variation treatment (i.e., Control) in three replicates in a randomized complete block (RCB) design on nine plantings during 7 months (i.e., January, February, April, June, July, August, October). Soil temperature (Ts) and volumetric soil‐water content (θs) were 1.3 °C warmer and 14% lower in Heated compared with Reference plots, respectively. Other than a 1% shading effect, no artifacts on gas exchange or water relations were associated with the IR warming apparatus. IR warming increased carbon gain characteristic of an increase in metabolic rates to higher temperature that may have been attributed to the well‐watered wheat crop and the supplemental irrigation that minimized plant‐to‐air water vapor pressure differences between IR‐warmed and nonwarmed plots. Nevertheless, seasonal oscillations in the IR warming response on carbon gain occurred. IR warming decreased leaf water status and provided thermal protection during freeze events. IR warming is an effective experimental methodology to investigate the impact of global climate change on agronomic cropping and natural ecosystems to a wide range of natural and artificially imposed air temperatures. 相似文献
3.
DUSTIN R. BRONSON STITH T. GOWER† MYRON TANNER‡ INGRID VAN HERK† 《Global Change Biology》2009,15(6):1534-1543
The boreal forest is predicted to experience the greatest warming of any forest biome during the next 50–100 years, but the effects of warming on vegetation phenology are not well known. The objectives of this study were to (1) examine the effects of whole ecosystem warming on bud burst and annual shoot growth of black spruce trees in northern Manitoba, Canada and (2) correlate bud burst to cumulative degree-days (CDD). The experimental design was a complete randomized block design that consisted of four replicated blocks. Each replicate block contained four treatments: soil warming only (heated outside, HO), soil and air warming (heated inside, HI), control outside (no chamber, no heating, CO), and inside a chamber maintained at ambient conditions (no soil or air warming, control inside, CI). Bud burst was measured during the first and second years of the experiment, starting in 2004, and annual shoot growth was measured for the first 3 years (2004–2006) of the study. On average, shoot bud burst occurred 11 and 9 days earlier in 2004 and 2005, respectively, for HI than for other treatments. However, mean CDD required for bud burst for HI was within the standard deviation of CO for both years. In year 1 of the treatments, shoot bud burst occurred earlier for HI than other treatments (CI, CO, HO), but final shoot length of HI trees was less than in CO trees. In the second year of warming, final shoot length was not different for HI than CO. By the third year of warming final shoot length was significantly greater for HI than all other treatments. Empirical results from this study suggest that soil and air warming causes an earlier bud burst for all years of observation and greater shoot lengths by the third season of warming. A longer growing season and greater annual shoot growth should increase carbon uptake by boreal black spruce trees in a warmer climate. 相似文献
4.
In order to facilitate interpretation and comparison of warming effects on ecosystems across various habitats, it is imperative to quantify changes in microclimate induced by warming facilities. This paper reports observed changes in air temperature, soil temperature and soil‐moisture content under experimental warming and clipping in a tallgrass prairie in the Great Plains, USA. We used a factorial design with warming as the primary factor nested with clipping as the secondary factor. Infrared heater was used in order to simulate climatic warming and clipping to mimic mowing for hay or grazing. The warming treatment significantly increased daily mean and minimum air temperatures by 1.1 and 2.3 °C, respectively, but had no effect on daily maximum air temperature, resulting in reduced diurnal air‐temperature range. Infrared heaters substantially increased daily maximum (2.5 and 3.5 °C), mean (2.0 and 2.6 °C) and minimum (1.8 and 2.1 °C) soil temperatures in both the unclipped and clipped subplots. Clipping also significantly increased daily maximum (3.4 and 4.3 °C) and mean (0.6 and 1.2 °C) soil temperatures, but decreased daily minimum soil temperature (1.0 and 0.6 °C in the control and warmed plots, respectively). Daily maximum, mean and minimum soil temperatures in the clipped, warmed subplots were 6.8, 3.2 and 1.1 °C higher than those in the unclipped, control subplots. Infrared heaters caused a reduction of 11.0% in soil moisture in the clipped subplots, but not in the unclipped subplots. Clipping reduced soil‐moisture content by 17.7 and 22.7% in the control and warmed plots, respectively. Experimental warming and clipping interacted to exacerbate soil‐moisture loss (26.7%). Overall, infrared heaters simulated climate warming well by enhancing downward infrared radiation and by reducing the diurnal air‐temperature range. 相似文献
5.
CAIYUN LUO GUANGPING XU ZENGGUO CHAO SHIPING WANG XINGWU LIN YIGANG HU ZHENHUA ZHANG JICHUANG DUAN XIAOFENG CHANG AILING SU YINGNIAN LI XINQUAN ZHAO MINGYUAN DU YANGHONG TANG BRUCE KIMBALL 《Global Change Biology》2010,16(5):1606-1617
Knowledge about the role of litter and dung decomposition in nutrient cycling and response to climate change and grazing in alpine ecosystems is still rudimentary. We conducted two separate studies to assess the relative role of warming and grazing on litter mass loss and on the temperature sensitivity of litter and dung mass loss. Experiments were conducted for 1–2 years under a controlled warming–grazing system and along an elevation gradient from 3200 to 3800 m. A free‐air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures (average 0.5–1.6 °C) from 0 to 40 cm depth, but neither warming nor grazing affected soil moisture except early in the growing seasons at 30 cm soil depth. Heaters caused greater soil warming at night‐time compared with daytime, but grazing resulted in greater soil warming during daytime compared with night‐time. Annual average values of the soil temperature at 5 cm were 3.2, 2.4 and 0.3 °C at 3200, 3600 and 3800 m, respectively. Neither warming nor grazing caused changes of litter quality for the first year of the controlled warming–grazing experiment. The effects of warming and grazing on litter mass losses were additive, increasing litter mass losses by about 19.3% and 8.3%, respectively, for the 2‐year decomposition periods. The temperature sensitivity of litter mass losses was approximately 11% °C?1 based on the controlled warming–grazing experiment. The annual cumulative litter mass loss was approximately 2.5 times that of dung along the elevation gradient. However, the temperature sensitivity (about 18% °C?1) of the dung mass loss was about three times that of the litter mass loss. These results suggest greater warming at night‐time compared with daytime may accelerate litter mass loss, and grazing will enhance carbon loss to atmosphere in the region through a decrease of litter biomass and an increase of dung production with an increase of stocking rate in future warmer conditions. 相似文献
6.
LONE LIBORIUSSEN TORBEN L. LAURIDSEN MORTEN SØNDERGAARD FRANK LANDKILDEHUS MARTIN SØNDERGAARD SØREN E. LARSEN ERIK JEPPESEN 《Freshwater Biology》2011,56(3):437-447
1. Climate warming is expected to change respiration in shallow lakes but to an extent that depends on nutrient state. 2. We measured sediment respiration (SR) over the season in the dark on intact sediment cores taken from a series of flow‐through, heated and unheated, nutrient‐enriched and unenriched mesocosms. The natural seasonal temperature cycle ranged from 2 to 20 °C in the unheated mesocosms. In the heated mesocosms, the temperature was raised 4–6 °C above ambient temperatures, depending on season, following the A2 climate change scenario downscaled to the local position of the mesocosms, but enlarged by 50%. We further measured ecosystem respiration (ER) in the mesocosms based on semi‐continuous oxygen measurements. 3. SR changed over the season and was approximately ten times higher in summer than in winter. SR showed no clear response to warming in the nutrient‐enriched treatment, while it increased with warming in the unenriched mesocosms which also had lower fish densities. 4. ER was not affected by artificial warming or nutrient enrichment, but it was ten times higher in summer than in winter. 5. SR contributed 24–32% to ER. The SR:ER ratio was generally stimulated by warming and was higher in winter than in summer, especially in the nutrient‐enriched mesocosms. 6. Our results indicate that climate warming may lead to higher SR, especially in clear, macrophyte‐dominated systems. Moreover, the contribution of SR to ER will increase with higher temperatures, but decrease as the winters get shorter. 相似文献
7.
DUSTIN R. BRONSON STITH T. GOWER MYRON TANNER† SUNE LINDER‡ INGRID VAN HERK 《Global Change Biology》2008,14(4):856-867
Soil surface carbon dioxide (CO2) flux (RS) was measured for 2 years at the Boreal Soil and Air Warming Experiment site near Thompson, MB, Canada. The experimental design was a complete random block design that consisted of four replicate blocks, with each block containing a 15 m × 15 m control and heated plot. Black spruce [Picea mariana (Mill.) BSP] was the overstory species and Epilobium angustifolium was the dominant understory. Soil temperature was maintained (~5 °C) above the control soil temperature using electric cables inside water filled polyethylene tubing for each heated plot. Air inside a 7.3‐m‐diameter chamber, centered in the soil warming plot, contained approximately nine black spruce trees was heated ~5 °C above control ambient air temperature allowing for the testing of soil‐only warming and soil+air warming. Soil surface CO2 flux (RS) was positively correlated (P < 0.0001) to soil temperature at 10 cm depth. Soil surface CO2 flux (RS) was 24% greater in the soil‐only warming than the control in 2004, but was only 11% greater in 2005, while RS in the soil+air warming treatments was 31% less than the control in 2004 and 23% less in 2005. Live fine root mass (< 2 mm diameter) was less in the heated than control treatments in 2004 and statistically less (P < 0.01) in 2005. Similar root mass between the two heated treatments suggests that different heating methods (soil‐only vs. soil+air warming) can affect the rate of decomposition. 相似文献
8.
Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces 总被引:20,自引:4,他引:20
H. G. Jones 《Plant, cell & environment》1999,22(9):1043-1055
This paper describes a new approach to the calibration of thermal infrared measurements of leaf temperature for the estimation of stomatal conductance and illustrates its application to thermal imaging of plant leaves. The approach is based on a simple reformulation of the leaf energy balance equation that makes use of temperature measurements on reference surfaces of known conductance to water vapour. The use of reference surfaces is an alternative to the accurate measurement of all components of the leaf energy balance and is of potentially wide application in studies of stomatal behaviour. The resolution of the technique when applied to thermal images is evaluated and some results of using the approach in the laboratory for the study of stomatal behaviour in leaves of Phaseolus vulgaris L. are presented. Conductances calculated from infrared measurements were well correlated with estimates obtained using a diffusion porometer. 相似文献
9.
Cameron J. van den Heuvel Sally A. Ferguson Saul S. Gilbert Drew Dawson 《Journal of thermal biology》2004,29(7-8):457-461
Sleepiness and changes in body temperature are temporally associated. (2) There is mounting evidence that insomnia may be caused by impaired heat loss capacity. (3) New techniques such as infrared thermal imaging may be useful tools to investigate thermoregulatory changes associated with sleep in humans. 相似文献
10.
VERÓNICA FERREIRA ANA LÚCIA GONÇALVES DOUGLAS L. GODBOLD CRISTINA CANHOTO 《Global Change Biology》2010,16(12):3284-3296
Cold water woodland streams, where terrestrially derived organic matter fuels aquatic food webs, can be affected by increases in atmospheric CO2 concentrations, as these are predicted to lead to increases in water temperature and decreases in organic matter quality. In fact, elevated CO2 (580 ppm) decreased the initial phosphorus concentration of birch litter by 30% compared with litter grown under ambient conditions (380 ppm). Here, we first assessed the effect of differences in litter quality on mass loss, microbial colonization and conditioned litter quality after submersion in a mountain stream for 2 weeks. Leaching did not change the relative differences between litter types, while fungal biomass was two fold higher in elevated litter. We then offered this litter (conditioned ambient and elevated) to a stream detritivore that was kept at 10 and 15 °C to assess the individual and interactive effects of increased temperature and decreased litter quality on invertebrate performance. When given a choice, the detritivore preferred elevated litter, but only at 10 °C. When fed litter types singularly, there was no effect of litter quality on consumption rates; however, the effect of temperature depended on individual size and time of collection. Growth rates were higher in individuals fed ambient litter at 10 °C when compared with individuals fed elevated litter at 15 °C. Mortality did not differ between litter types, but was higher at 15 °C than at 10 °C. Increases in temperature led to alterations in the individual body elemental composition and interacted with litter type. The performance of the detritivore was therefore more affected by increases in temperature than by small decreases in litter quality. However, it seems conceivable that in a future global warming scenario the simultaneous increases in water temperature and decreases in litter quality might affect detritivores performance more than predicted from the effects of both factors considered individually. 相似文献
11.
GEMMA WOLDENDORP † MICHAEL J. HILL † RUTH DORAN † MARILYN C. BALL† 《Global Change Biology》2008,14(2):294-308
Although plants are more susceptible to frost damage under elevated atmospheric [CO2], the importance of frost damage under future, warmer climate scenarios is unknown. Accordingly, we used a model to examine the incidence and severity of frost damage to snow gum (Eucalyptus pauciflora) in a sub‐alpine region of Australia for current and future conditions using the A2 IPCC elevated CO2 and climate change scenario. An existing model for predicting frost effects on E. pauciflora seedlings was adapted to include effects of elevated [CO2] on acclimation to freezing temperatures, calibrated with field data, and applied to a study region in Victoria using climate scenario data from CSIRO's Global Climate Model C‐CAM for current (1975–2004) and future (2035–2064) 30 years climate sequences. Temperatures below 0 °C were predicted to occur less frequently while the coldest temperatures (i.e. those below ?8 °C) were almost as common in the future as in the current climate. Both elevated [CO2] and climate warming affected the timing and rates of acclimation and de‐acclimation of snow gum to freezing temperatures, potentially reducing the length of time that plants are fully frost tolerant and increasing the length of the growing season. Despite fewer days when temperatures fall below 0 °C in the future, with consequently fewer damaging frosts with lower average levels of impact, individual weather sequences resulting in widespread plant mortality may still occur. Furthermore, delayed acclimation due to either warming or rising [CO2] combined with an early severe frost could lead to more frost damage and higher mortality than would occur in current conditions. Effects of elevated [CO2] on frost damage were greater in autumn, while warming had more effect in spring. Thus, frost damage will continue to be a management issue for plantation and forest management in regions where frosts persist. 相似文献
12.
Chapin FS 《Annals of botany》2003,91(4):455-463
Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime. 相似文献
13.
Scope In this study, a dynamic model was built in which LCA and PBM were integrated to quantitatively assess the total environmental
impacts induced by the product population in a society over time. Specifically, a determination was carried out concerning
how Japan’s air conditioner population is used (lifetime distribution, number of units, etc.) and an assessment was made concerning
the Global Warming Potential (GWP) associated with the air conditioner population.
Methods The proposed dynamic model was applied to air conditioners for analyzing the total GWP caused by the air conditioner population
in Japan from 1990 to 2010. To create a trend forecast model for future environmental load, scenarios for air conditioner
production up to 2010 were formulated and the total GWP from the air conditioner population was predicted. Conducted also
were sensitivity analyses whose parameters were air conditioner performance, lifetime and the rate of refrigerant recovery
when retired units are processed.
Results and Discussion Applying the PBM to the air conditioner population in 2000, it was found that 81.5 million units consumed 5.94 x 10p10 kWh in that year, which was a 6.1 % increase in the total annual power consumption in 1990. In both a stationary scenario
and a steady growth (1.5% annual increase), it was found that the total GWP would be 27.7% higher than in 1990 under the stationary
scenario and 37.8% higher under the steady growth scenario. The improvements in air conditioner performance will have a small
effect on reducing the total GWP from that population. Furthermore, in connection with the average lifetime, it was found
that the GWP, due to refrigerant releases when units are disposed of, would be relatively large in 2000 and the following
years.
Conclusions Thus, shorter product lifetimes will spur a replacement of air conditioners with new units, a situation that will only lead
to the reduction of GWP if the recovery rate of refrigerant is to be achieved to more than 50% under the stationary scenario.
Recommendations and Outlook To meet COP3 targets for Japan in 2010 (i.e. to reach the same level as in 1990 for household appliances), our study shows
that it will be vital to raise the refrigerant recovery rate. If the number of air conditioners in use remains unchanged,
recovery would have to be 45.7%, but under the steady growth scenario it would have to be at least 60.4%. Therefore, it will
be difficult to meet COP3 targets unless the refrigerant recovery rate is strongly increased. This method is applicable to
assess not only the GWP of air conditioners, but also other environmental impacts caused by a variety of product populations,
which will be quite effective for setting targets of products’ performance, policymaking, etc. 相似文献
14.
Martino Orrù Efisio Mattana Hugh W. Pritchard Gianluigi Bacchetta 《Annals of botany》2012,110(8):1651-1660