首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ammonium ion concentrations ranging from 0 to 10 mM are shown to significantly reduce the sialylation of granuiocyte colony-stimulating factor (G-CSF) produced by recombinant Chinese hamster ovary cells. Specifically, the degree of completion of the final reaction in the O-linked glycosylation pathway, the addition of sialic acid in an alpha(2,6) linkage to N-acetylgalactosamine, is reduced by NH(4) (+) concentrations of as low as 2 mM. The effect of ammonia on sialylation is rapid, sustained, and does not affect the secretion rate of G-CSF. Additionally, the effect can be mimicked using the weak base chloroquine, suggesting that the effect is related to the weak base characteristics of ammonia. In support of this hypothesis, experiments using brefeldin A suggest that the addition of sialic acid in an alpha(2,6) linkage to N-acetylgalactosamine occurs in the trans-Golgi compartment prior to the trans-Golgi network, which would be expected under normal conditions to have a slightly acidic pH in the range from 6.5 to 6.75. Ammonium ion concentrations of 10 mM would be expected to reduce significantly the differences in pH between acidic intracellular compartments and the cytoplasm. The pH-activity profile for the CHO O-linked alpha(2,6) sialytransferase using monosialylated G-CSF as a substrate reveals a twofold decrease in enzymatic activity across the pH range from 6.75 to 7.0.Mathematical modeling of this sialylation reaction supports the hypothesis that this twofold decrease in sialyltransferase activity resulting from an ammoniainduced increase in trans-Golgi pH could produce the observed decrease in G-CSF sialylation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
Lao MS  Toth D  Danell G  Schalla C 《Cytotechnology》1996,22(1-3):43-52
Two degradative activities were found in a recombinant Chinese hamster ovary cell culture. These activities became more dominant under high cell density and extended running time, as achieved in a semi-continous perfusion culture. The first, insulin degradative activity caused a growth upset in the 3rd cycle of the perfusion culture and shortened the length of the bioreactor process. The second activity, derived from the neutral pH stable sialidase, was found to affect the integrity of the carbohydrate structure of the recombinant protein, causing increase in heterogeneity in molecular weight and pI of the glycoforms. The most efficient way to overcome these problems may be the use of genetically altered designer cells as the production cell line.Abbreviations IDA insulin degradative activity - 4MU-NeuAc 4-methylumbelliferyl acetyl neuraminic acid - 4MU-Gal 4-methylumbelliferyl-galactoside - PVDF polyvinylidene difluoride - qglucose specific glucose consumption rate - specific growth rate  相似文献   

3.
A recombinant Chinese hamster ovary (CHO) cell line making human interfron-gamma (IFN-gamma) was grown in 12-L stirred tank fermentors in three batch fermentations under conditions of constant temperature, pH, and dissolved oxygen tension. In addition to cell growth, metabolite, and productivity data, a detailed analysis of the carbohydrate structures attached to each glycosylation site of IFN-gamma was achieved using matrix-assisted laser desorption mass spectrometry (MALDI-MS) in combination with exoglycosidase array sequencing. Complex biantennary oligosaccharides (particularly Gal(2)GlcNAc(4)Man(3) which was core alephl-6 fucosylated at Asn(25) but not at Asng(97)) were most prevalent at both glycosylation sites. However, considerable microheterogeneity arising from the presence of triantennary and truncated glycan structures was also observed. The proportion of the dominant core glycan structure (Gal(2)GlcNAc(4)Man(3) +/- Fuc(1)) decreased by 15-26% during batch culture, with increases in the proportion of oligomannose and truncated glycans over the same time period. Prolonged culture resulting from an extended lag phase led to further accumulation of oligomannose and truncated structures, reaching up to 52% of total glycans attached to Asng(97) by 240 h of culture. The implications of these glycosylation changes for optimizing the time for harvesting cell cultures, and for the clearance of recombinant therapeutic products in vivo are discussed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
5.
The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33 degrees C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions.  相似文献   

6.
The chemical additive sodium butyrate (NaBu) has been applied in cell culture media as a direct and convenient method to increase the protein expression in Chinese hamster ovary (CHO) and other mammalian cells. In this study, we examined an alternative chemical additive, 1,3,4‐O‐Bu3ManNAc, for its effect on recombinant protein production in CHO. Supplementation with 1,3,4‐O‐Bu3ManNAc for two stable CHO cell lines, expressing human erythropoietin or IgG, enhanced protein expression for both products with negligible impact on cell growth, viability, glucose utilization, and lactate accumulation. In contrast, sodium butyrate treatment resulted in a ~20% decrease in maximal viable cell density and ~30% decrease in cell viability at the end of cell cultures compared to untreated or 1,3,4‐O‐Bu3ManNAc treated CHO cell lines for both products. While NaBu treatment enhanced product yields more than the 1,3,4‐O‐Bu3ManNAc treatment, the NaBu treated cells also exhibited higher levels of caspase 3 positive cells using microscopy analysis. Furthermore, the mRNA levels of four cell apoptosis genes (Cul2, BAK, BAX, and BCL2L11) were up‐regulated more in sodium butyrate treated wild‐type, erythropoietin, or IgG expressing CHO‐K1 cell lines while most of the mRNA levels of apoptosis genes in 1,3,4‐O‐Bu3ManNAc treated cell lines remained equal or increased only slightly compared to the levels in untreated CHO cell lines. Finally, lectin blot analysis revealed that the 1,3,4‐O‐Bu3ManNAc‐treated cells displayed higher relative sialylation levels on recombinant EPO, consistent with the effect of the ManNAc component of this additive, compared to control while NaBu treatment led to lower sialylation levels than control, or 1,3,4‐O‐Bu3ManNAc‐treatment. These findings demonstrate that 1,3,4‐O‐Bu3ManNAc has fewer negative effects on cell cytotoxicity and apoptosis, perhaps as a result of a more deliberate uptake and release of the butyrate compounds, while simultaneously increasing the expression of multiple recombinant proteins, and improving the glycosylation characteristics when applied at comparable molarity levels to NaBu. Thus, 1,3,4‐O‐Bu3ManNAc represents a highly promising media additive alternative in cell culture for improving protein yields without sacrificing cell mass and product quality in future bioproduction processes.
  相似文献   

7.
8.
The increasing demand for antibody-based therapeutics has emphasized the need for technologies to improve recombinant antibody titers from mammalian cell lines. Moreover, as antibody therapeutics address an increasing spectrum of indications, interest has increased in antibody engineering to improve affinity and biological activity. However, the cellular mechanisms that dictate expression and the relationships between antibody sequence and expression level remain poorly understood. Fundamental understanding of how mammalian cells handle high levels of transgene expression and of the relationship between sequence and expression are vital to the development of new antibodies and for increasing recombinant antibody titers. In this work, we analyzed a pair of mutants that vary by a single amino acid at Kabat position 49 (heavy-chain framework), resulting in differential transient and stable titers with no apparent loss of antigen affinity. Through analysis of mRNA, gene copy number, intracellular antibody content, and secreted antibody, we found that while translational/post-translational mechanisms are limiting in transient systems, it appears that the amount of available transgenic mRNA becomes the limiting event on stable integration of the recombinant genes. We also show that amino acid substitution at residue 49 results in production of a non-secreted HC variant and postulate that stable antibody expression is maintained at a level which prevents toxic accumulation of this HC-related protein. This study highlights the need for proper sequence engineering strategies when developing therapeutic antibodies and alludes to the early analysis of transient expression systems to identify the potential for aberrant stable expression behavior.  相似文献   

9.
10.
11.
Human recombinant erythropoietin (rHuEPO) was produced from Chinese hamster ovary (CHO) cells transfected with the human EPO gene. The cells were grown in batch cultures in controlled bioreactors in which the set-points for dissolved oxygen varied between 3% and 200%. The cell-specific growth rate and final cell yield was significantly lower under hyperoxic conditions (200% DO). However, there was no significant difference in growth rates at other oxygen levels compared to control cultures run under a normoxic condition (50% DO). The specific productivity of EPO was significantly lower at a DO set-point of 3% and 200% but maintained a consistently high value between 10% to 100% DO. The EPO produced under all conditions as analyzed by two-dimensional electrophoresis showed a molecular weight range of 33 to 37 kDa and a low isoelectric point range of 3.5 to 5.0. This corresponds to a highly glycosylated and sialylated protein with a profile showing at least seven distinct isoforms. The glycan pattern of isolated samples of EPO was analyzed by weak anion exchange (WAX) HPLC and by normal-phase HPLC incorporating sequential digestion with exoglycosidase arrays. Assigned structures were confirmed by mass spectrometry (MALDI-MS). The most prominent glycan structures were core fucosylated tetranntenary with variable sialylation. However, significant biantennary, triantennary, and non-fucosylated glycans were also identified. Detailed analysis of these glycan structures produced under variable dissolved oxygen levels did not show consistently significant variations except for the ratio of fucosylated to non-fucosylated isoforms. Maximum core fucosylation (80%) was observed at 50% and 100% DO, whereas higher or lower DO levels resulted in reduced fucosylation. This observation of lower fucosylation at high or low DO levels is consistent with previous data reported for glycoprotein production in insect cells.  相似文献   

12.
Previous studies suggest that secretion of cloned proteins synthesized by recombinant Chinese hamster ovary (CHO) cells can be adenosine triphosphate (ATP) limited. Other research indicates that the presence of cloned Vitreoscilla hemoglobin (VHb) enhances ATP production in oxygen-limited Escherichia coli. To evaluate the influence of VHb expression on recombinant CHO cell productivity, the vhb gene has been fused to the mouse mammary tumor virus (MMTV) promoter and cloned in a CHO cell line previously engineered to express human tissue plasminogen activator (tPA). Western blot analysis confirms dexamethasone-inducible VHb expression in all of the clones tested. Batch cultivation experiments with one VHb-expressing clone and the parental CHO-tPA expressing cells. The VHb-expressing clone exhibits specific tPA production 40 to 100% greater than the parental CHO-tPA culture. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
The use of a temperature switch to control the growth and productivity of temperature-sensitive (ts) mutants was investigated to extend the productive life span of recombinant Chinese hamster ovary (CHO) cells in batch culture. Bromodeoxyuridine was used at 39 degrees C to select mutagenized CHO-K1 cells, which resulted in the isolation of 31 temperature-sensitive mutants that were growth inhibited at 39 degrees C. Two of these mutants were successfully transfected with the gene for tissue inhibitor of metalloproteinases (TIMP) using glutamine synthetase amplification, and a permanent recombinant cell line established (5G1-B1) that maintains the ts phenotype.Continuous exposure to the nonpermissive temperature (npt) of 39 degrees C led to a rapid decline in cell viability. However, a temperature regime using alternating incubations at 34 degrees C and 39 degrees C arrested the 5G1-B1 cells while retaining a high cell viability for up to 170 h in culture. The specific production rate of the growth-arrested cells was 3-4 times that of control cultures maintained at a constant 34 degrees C over the crucial 72-130-h period of culture, which resulted in a 35% increase in the maximum product yield. Glucose uptake and lactate production both decreased in arrested cells. Flow cytometric analysis indicated that 5G1-B1 cells arrested in the G(1) or G(0) phase of the cell cycle, and no major structural damage was caused to these cells by the alternating temperature regime.These results demonstrate that growth-arrested ts CHO cells have increased productivity compared to growing cultures and maintain viability for longer periods. The system offers the prospect of enhancing the productivity of recombinant mammalian cells grown in simple batch fermentors. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
A flow chamber was used to impart a steady laminar shear stress on a recombinant Chinese hamster ovary (CHO) cell line expressing human growth hormone (hGH). The cells were subjected to shear stress ranging from 0.005 to 0.80 N m(-2). The effect of shear stress on the cell specific glucose uptake, cell specific hGH, and lactate productivity rates were calculated. No morphological changes to the cells were observed over the range of shear stresses examined. When the cells were subjected to 0.10 N m(-2) shear in protein-free media without Pluronic F-68, recombinant protein production ceased with no change in cell morphology, whereas control cultures were expressing hGH at 0.35 microg/10(6 )cells/h. Upon addition of the shear protectants, Pluronic F-68 (0.2% [w/v]) or fetal bovine serum (1.0% [v/v] FBS), the productivity of the cells was restored. The effect of increasing shear stress on the cells in protein-free medium containing Pluronic F-68 was also investigated. Cell specific metabolic rates were calculated for cells under shear stress and for no-shear control cultures performed in parallel, with shear stress rates expressed as a percentage of those obtained for control cultures. Upon increasing shear from 0.005 to 0.80 N m(-2), the cell specific hGH productivity decreased from 100% at 0.005 N m(-2) to 49% at 0.80 N m(-2) relative to the no-shear control. A concurrent increase in the glucose uptake rate from 115% at 0.01 N m(-2) to 142% at 0.80 N m(-2), and decreased lactate productivity from 92% to 50%, revealed a change in the yield of products from glucose compared with the static control. It was shown that shear stress, at sublytic levels in medium containing Pluronic F-68, could decrease hGH specific productivity.  相似文献   

15.
Previously, overexpression of anti‐apoptotic proteins, such as E1B‐19K and Aven, was reported to alter lactate metabolism of CHO cells in culture. To investigate the effect of Bcl‐xL, a well‐known anti‐apoptotic protein, on lactate metabolism of recombinant CHO (rCHO) cells, two antibody‐producing rCHO cell lines with regulated Bcl‐xL overexpression (CS13*‐0.02‐off‐Bcl‐xL and CS13*‐1.00‐off‐Bcl‐xL) were established using the Tet‐off system. When cells were cultivated without Bcl‐xL overexpression, the specific lactate production rate (qLac) of CS13*‐0.02‐off‐Bcl‐xL and CS13*‐1.00‐off‐Bcl‐xL were 7.32 ± 0.37 and 6.78 ± 0.56 pmol/cell/day, respectively. Bcl‐xL overexpression, in the absence of doxycycline, did not affect the qLac of either cell line, though it enhanced the viability during cultures. Furthermore, activities of the enzymes related to glucose and lactate metabolism, such as hexokinase, glucose‐6‐phosphate dehydrogenase, lactate dehydrogenases, and alanine aminotransferase, were not affected by Bcl‐xL overexpression either. Taken together, Bcl‐xL overexpression showed no significant effect on the lactate metabolism of rCHO cells. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1594–1598, 2013  相似文献   

16.
Acidic Golgi pH plays an important role in protein glycosylation, one of the critical quality attributes of therapeutic proteins. To determine the intracellular Golgi pH during culture, stable Chinese hamster ovary (CHO) cell clones expressing pHluorin2, a ratiometric pH-sensitive fluorescent protein (FP), in the cis- and trans-Golgi, were constructed by fusing pHluorin2 with specific targeting proteins, acetylglucosaminyltransferase, and a galactosyltransferase, respectively. Stable CHO cell clones expressing pHluorin2 in the cytoplasm were also constructed. The subcellular localization of FPs was confirmed by immunofluorescence analysis. Live-cell imaging revealed that the intracellular pH (pHi) of clones expressing the ratiometric pH-sensitive FPs converged to a specific pH range (cis-Golgi: 6.4–6.5; trans-Golgi: 5.9–6.0; and cytoplasm: 7.1–7.2). The pHi was successfully evaluated in various culture conditions. Although culture pH was maintained at 7.2 in a bioreactor, the Golgi pH increased with culture time. Elevated ammonia concentration and osmolality were partially responsible for the increased Golgi pH during bioreactor cultures. Taken together, the application of ratiometric pH-sensitive FPs in monitoring the Golgi pH of CHO cells during culture provides a new perspective to improve protein glycosylation through pHi control.  相似文献   

17.
The effects of constant osmolarity, between 300 and500 mOsm/kg, on the metabolism of Chinese HamsterOvary (CHO) cells producing tissue plasminogenactivator (tPA) were compared between adhesion andsuspension cultures. In both suspension and adhesionculture, the specific rates of glucose consumption(G), lactate production (qL), and tPAproduction (qtPA) increased as osmolarityincreased, while these rates decreased when osmolaritywas higher than the respective critical levels. However, specific growth rate () decreased withincrease in osmolarity and this slope grew steeper inthe osmolarity range higher than the critical level. The decrease in in the adhesion culture was morerapid than that in the suspension culture. Thecritical osmolarity for adhesion culture (400 mOsm/kg)was lower than that for suspension culture (450 mOsm/kg). These results indicated that the adhesionculture was more sensitive to increase of osmolaritythan the suspension culture, while the specific ratesobtained from the adhesion cultures were in general1.5- to 3-fold higher than those obtained from thesuspension cultures. Cell volume increased asosmolarity increased in both the suspension andadhesion cultures, as reported previously forsuspension culture of hybridoma cells, but there wasno morphological change in the suspension culture. Incontrast, cell height decreased and cell adhesion areamarkedly increased as osmolarity increased in theadhesion culture. This morphological change inadhesion cultures may be one reason for the highersensitivity of adherent cells to the increase ofosmolarity than suspended cells.  相似文献   

18.
A recombinant CHO cell line, CHO2DS, was immobilized on porous microcarrier Cytopore 1 and cultivated in 1 l modified Super-spinner and 2 l stirred tank bioreactor with the perfusion of a low-cost chemically defined protein-free medium DF6S. CHO2DS cells could enter into the inner space and grew both in the inner space and on the surface of Cytopore 1 in DF6S and produced prothrombin at 22 mg l–1 after 10 days. From a seeding density of 5.7 × 105 cells ml–1, the highest viable cell density of CHO2DS was 1.12 × 107 cells ml–1.  相似文献   

19.
20.
Dimethyl sulfoxide (DMSO) (1% v/v) stimulated stable transformed Chinese hamster ovary (CHO) cells to synthesize different recombinant proteins and repress their proliferation rate. The expressions of a fusion protein and -galactosidase were increased 1.6- and 1.4-fold after adding DMSO. The expression of fusion protein was increased by up to 2.8-fold that of uninduced control by the simultaneous addition of DMSO and pentanoic acid. However, DMSO did not increase the production of the monoclonal antibody (immunoglobulin G) of three hybridoma cell lines (OKM1, OKT4 and HyGPD-YK-1-1), although it could inhibit the growth rates of the hybridoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号