首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translation of poliovirion RNA in HeLa S10 extracts resulted in the formation of RNA replication complexes which catalyzed the asymmetric replication of poliovirus RNA. Synthesis of poliovirus RNA was detected in unfractionated HeLa S10 translation reactions and in RNA replication complexes isolated from HeLa S10 translation reactions by pulse-labeling with [32P]CTP. The RNA replication complexes formed in vitro contained replicative-intermediate RNA and were enriched in viral protein 3CD and the membrane-associated viral proteins 2C, 2BC, and 3AB. Genome-length poliovirus RNA covalently linked to VPg was synthesized in large amounts by the replication complexes. RNA replication was highly asymmetric, with predominantly positive-polarity RNA products. Both anti-VPg antibody and guanidine HCl inhibited RNA replication and virus formation in the HeLa S10 translation reactions without affecting viral protein synthesis. The inhibition of RNA synthesis by guanidine was reversible. The reversible nature of guanidine inhibition was used to demonstrate the formation of preinitiation RNA replication complexes in reaction mixes containing 2 mM guanidine HCl. Preinitiation complexes sedimented upon centrifugation at 15,000 x g and initiated RNA replication upon their resuspension in reaction mixes lacking guanidine. Initiation of RNA synthesis by preinitiation complexes did not require active protein synthesis or the addition of soluble viral proteins. Initiation of RNA synthesis by preinitiation complexes, however, was absolutely dependent on soluble HeLa cytoplasmic factors. Preinitiation complexes also catalyzed the formation of infectious virus in reaction mixes containing exogenously added capsid proteins. The titer of infectious virus produced in such trans-encapsidation reactions reached 4 x 10(7) PFU/ml. The HeLa S10 translation-RNA replication reactions represent an efficient in vitro system for authentic poliovirus replication, including protein synthesis, polyprotein processing, RNA replication, and virus assembly.  相似文献   

2.
Poliovirus protein 2C contains a predicted N-terminal amphipathic helix that mediates association of the protein with the membranes of the viral RNA replication complex. A chimeric virus that contains sequences encoding the 18-residue core from the orthologous amphipathic helix from human rhinovirus type 14 (HRV14) was constructed. The chimeric virus exhibited defects in viral RNA replication and produced minute plaques on HeLa cell monolayers. Large plaque variants that contained mutations within the 2C-encoding region were generated upon subsequent passage. However, the majority of viruses that emerged with improved growth properties contained no changes in the region encoding 2C. Sequence analysis and reconstruction of genomes with individual mutations revealed changes in 3A or 2B sequences that compensated for the HRV14 amphipathic helix in the polio 2C-containing proteins, implying functional interactions among these proteins during the replication process. Direct binding between these viral proteins was confirmed by mammalian cell two-hybrid analysis.  相似文献   

3.
HeLa cells were transfected with several plasmids that encoded all poliovirus (PV) nonstructural proteins. Viral RNAs were transcribed by T7 RNA polymerase expressed from recombinant vaccinia virus. All plasmids produced similar amounts of viral proteins that were processed identically; however, RNAs were designed either to serve as templates for replication or to contain mutations predicted to prevent RNA replication. The mutations included substitution of the entire PV 5' noncoding region (NCR) with the encephalomyocarditis virus (EMCV) internal ribosomal entry site, thereby deleting the 5'-terminal cloverleaf-like structure, or insertion of three nucleotides in the 3Dpol coding sequence. Production of viral proteins was sufficient to induce the characteristic reorganization of intracellular membranes into heterogeneous-sized vesicles, independent of RNA replication. The vesicles were stably associated with viral RNA only when RNA replication could occur. Nonreplicating RNAs localized to distinct, nonoverlapping regions in the cell, excluded from the viral protein-membrane complexes. The absence of accumulation of positive-strand RNA from both mutated RNAs in transfected cells was documented. In addition, no minus-strand RNA was produced from the EMCV chimeric template RNA in vitro. These data show that the 5'-terminal sequences of PV RNA are essential for initiation of minus-strand RNA synthesis at its 3' end.  相似文献   

4.
Poliovirus (PV) modifies membrane-trafficking machinery in host cells for its viral RNA replication. To date, ARF1, ACBD3, BIG1/BIG2, GBF1, RTN3, and PI4KB have been identified as host factors of enterovirus (EV), including PV, involved in membrane traffic. In this study, we performed small interfering RNA (siRNA) screening targeting membrane-trafficking genes for host factors required for PV replication. We identified valosin-containing protein (VCP/p97) as a host factor of PV replication required after viral protein synthesis, and its ATPase activity was essential for PV replication. VCP colocalized with viral proteins 2BC/2C and 3AB/3B in PV-infected cells and showed an interaction with 2BC and 3AB but not with 2C and 3A. Knockdown of VCP did not suppress the replication of coxsackievirus B3 or Aichi virus. A VCP-knockdown-resistant PV mutant had an A4881G (a mutation of E253G in 2C) mutation, which is known as a determinant of a secretion inhibition-negative phenotype. However, knockdown of VCP did not affect the inhibition of cellular protein secretion caused by overexpression of each individual viral protein. These results suggested that VCP is a host factor required for viral RNA replication of PV among membrane-trafficking proteins and provides a novel link between cellular protein secretion and viral RNA replication.  相似文献   

5.
Action of 3-methylquercetin on poliovirus RNA replication.   总被引:12,自引:2,他引:10       下载免费PDF全文
3-Methylquercetin is a natural flavone that powerfully blocks poliovirus replication. This compound inhibits selectively poliovirus RNA synthesis both in infected cells and in cell-free systems. Poliovirus double-stranded RNA (replicative forms) is still made in the presence of this inhibitor, whereas the synthesis of single-stranded RNA and the formation of replicative intermediates are drastically blocked.  相似文献   

6.
Studies on protein production using filamentous fungi have mostly focused on improvement of the protein yields by genetic modifications such as overexpression. Recent genome sequencing in several filamentous fungal species now enables more systematic approaches based on reverse genetics and molecular biology of the secretion pathway. In this review, we summarize recent molecular-based advances in our understanding of vesicular trafficking in filamentous fungi, and discuss insights into their high secretion ability and application for protein production.  相似文献   

7.
8.
9.
Genetic screens in the yeast Saccharomyces cerevisiae have identified many proteins involved in the secretory pathway, most of which have orthologues in higher eukaryotes. To investigate whether there are additional proteins that are required for secretion in metazoans but are absent from yeast, we used genome‐wide RNA interference (RNAi) to look for genes required for secretion of recombinant luciferase from Drosophila S2 cells. This identified two novel components of the secretory pathway that are conserved from humans to plants. Gryzun is distantly related to, but distinct from, the Trs130 subunit of the TRAPP complex but is absent from S. cerevisiae. RNAi of human Gryzun (C4orf41) blocks Golgi exit. Kish is a small membrane protein with a previously uncharacterised orthologue in yeast. The screen also identified Drosophila orthologues of almost 60% of the yeast genes essential for secretion. Given this coverage, the small number of novel components suggests that contrary to previous indications the number of essential core components of the secretory pathway is not much greater in metazoans than in yeasts.  相似文献   

10.
Kinetics of poliovirus replication in HeLa cells infected by isolated RNA   总被引:3,自引:0,他引:3  
Under conditions with the least toxicity for cells compatible with an optimal sensitizing effect for RNA infection, 47% of HeLa cells can be infected by viral RNA. Both RNA and virus infective centers produce identical amounts, i.e. 2000 PFU of progeny virus per infective center and both incorporate 3H uridine in equal quantities. After infection with an effective multiplicity of ten PFU of virus or RNA, virus maturation occurs thirty minutes earlier in RNA-infected cells as compared to virus-infected cells.  相似文献   

11.
12.
K Shiroki  T Ishii  T Aoki  M Kobashi  S Ohka    A Nomoto 《Journal of virology》1995,69(11):6825-6832
Mouse cells expressing the human poliovirus receptor (PVR-mouse cells) as well as human HeLa cells are susceptible to poliovirus type 1 Mahoney strains and produce a large amount of progeny virus at 37 degrees C. However, the virus yield is markedly reduced at 40 degrees C in PVR-mouse cells but not in HeLa cells. The reduction in virus yield at 40 degrees C appears to be due to a defective initiation process in positive-strand RNA synthesis (K. Shiroki, H. Kato, S. Koike, T. Odaka, and A. Nomoto, J. Virol. 67:3989-3996, 1993). To gain insight into the molecular mechanisms involved in this detective process, naturally occurring heat-resistant (Hr)-mutants which show normal growth ability in PVR-mouse cells even at 40 degrees C were isolated from a virus stock of the Mahoney strain and their mutation sites that affect the phenotype were identified. The key mutation was a change from adenine (A) to guanine (G) at nucleotide position (nt) 133 within the 5' noncoding region of the RNA. This mutation also gave an Hr phenotype to the viral plus-strand RNA synthesis in PVR-mouse cells. Mutant Mahoney strains with a single point mutation at nt 133 (A to G, C, or T or deletion) were investigated for their ability to grow in PVR-mouse cells at 40 degrees C. Only the mutant carrying G at nt 133 showed an Hr growth phenotype in PVR-mouse cells. These results suggest that a host cellular factor(s) interacts with an RNA segment around nt 133 of the plus-strand RNA or the corresponding region of the minus-strand RNA, contributing to efficiency of plus-strand RNA synthesis.  相似文献   

13.
Hijacking the translation apparatus by RNA viruses   总被引:14,自引:0,他引:14       下载免费PDF全文
As invading viruses do not harbor functional ribosomes in their virions, successful amplification of the viral genomes requires that viral mRNAs compete with cellular mRNAs for the host cell translation apparatus. Several RNA viruses have evolved remarkable strategies to recruit the host translation initiation factors required for the first steps in translation initiation by host cell mRNAs. This review describes the ways that three families of RNA viruses effectively usurp limiting translation initiation factors from the host.  相似文献   

14.
The coronavirus mouse hepatitis virus (MHV) performs RNA replication on double membrane vesicles (DMVs) in the cytoplasm of the host cell. However, the mechanism by which these DMVs form has not been determined. Using genetic, biochemical, and cell imaging approaches, the role of autophagy in DMV formation and MHV replication was investigated. The results demonstrated that replication complexes co-localize with the autophagy proteins, microtubule-associated protein light-chain 3 and Apg12. MHV infection induces autophagy by a mechanism that is resistant to 3-methyladenine inhibition. MHV replication is impaired in autophagy knockout, APG5-/-, embryonic stem cell lines, but wild-type levels of MHV replication are restored by expression of Apg5 in the APG5-/-cells. In MHV-infected APG5-/-cells, DMVs were not detected; rather, the rough endoplasmic reticulum was dramatically swollen. The results of this study suggest that autophagy is required for formation of double membrane-bound MHV replication complexes and that DMV formation significantly enhances the efficiency of replication. Furthermore, the rough endoplasmic reticulum is implicated as the possible source of membranes for replication complexes.  相似文献   

15.
The multidomain RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus in the alphavirus-like superfamily, plays key roles in assembly and function of the viral RNA replication complex. 1a, which encodes RNA capping and helicase-like domains, localizes to endoplasmic reticulum membranes, recruits BMV 2a polymerase and viral RNA templates, and forms membrane-bound, capsid-like spherules in which RNA replication occurs. cis-acting signals necessary and sufficient for RNA recruitment by 1a have been mapped in BMV genomic RNA2 and RNA3. Both signals comprise an extended stem-loop whose apex matches the conserved sequence and structure of the TPsiC stem-loop in tRNAs (box B). Mutations show that this box B motif is crucial to 1a responsiveness of wild-type RNA2 and RNA3. We report here that, unexpectedly, some chimeric mRNAs expressing the 2a polymerase open reading frame from RNA2 were recruited by 1a to the replication complex and served as templates for negative-strand RNA synthesis, despite lacking the normally essential, box B-containing 5' signal. Further studies showed that this template recruitment required high-efficiency translation of the RNA templates. Moreover, multiple small frameshifting insertion or deletion mutations throughout the N-terminal region of the open reading frame inhibited this template recruitment, while an in-frame insertion did not. Providing 2a in trans did not restore template recruitment of RNAs with frameshift mutations. Only those deletions in the N-terminal region of 2a that abolished 2a interaction with 1a abolished template recruitment of the RNA. These and other results indicate that this alternate pathway for 1a-dependent RNA recruitment involves 1a interaction with the translating mRNA via the 1a-interactive N-terminal region of the nascent 2a polypeptide. Interaction with nascent 2a also may be involved in 1a recruitment of 2a polymerase to membranes.  相似文献   

16.
To investigate the cellular proteins involved in simian virus 40 (SV40) replication, extracts derived from human 293 cells have been fractionated into multiple components. When such fractions are combined with the virus-encoded T antigen (TAg) and SV40 origin containing plasmid DNA, efficient and complete replication is achieved, while each fraction alone is inactive. At present, a minimum of eight such cellular components have been identified. Previous experiments have demonstrated one of these to be the cell-cycle-regulated proliferating-cell nuclear antigen (PCNA). As PCNA has been identified as a processivity factor for DNA polymerase δ, we suggest that both polymerases α and β are involved in this system. Three further fractions have been identified. One is a partially purified fraction which, under certain conditons, is required with TAg for the formation of a pre-synthesis complex of proteins at the replication origin. The second of these factors, RF-A, is a complex of three polypeptides which may function as a eucaryotic SSB. The third, RF-C, is a factor which is required, with PCNA, for coordinated leading- and lagging-strand synthesis at the replication fork. Complete synthesis and segregation of the daughter molecules also requires the presence of topoisomerases I and II. These results suggest a model for DNA synthesis which involves multiple stages prior to and during replicative DNA synthesis.  相似文献   

17.
To investigate the cellular proteins involved in simian virus 40 (SV40) replication, extracts derived from human 293 cells have been fractionated into multiple components. When such fractions are combined with the virus-encoded T antigen (TAg) and SV40 origin containing plasmid DNA, efficient and complete replication is achieved, while each fraction alone is inactive. At present, a minimum of eight such cellular components have been identified. Previous experiments have demonstrated one of these to be the cell-cycle-regulated proliferating-cell nuclear antigen (PCNA). As PCNA has been identified as a processivity factor for DNA polymerase delta, we suggest that both polymerases alpha and delta are involved in this system. Three further fractions have been identified. One is a partially purified fraction which, under certain conditions, is required with TAg for the formation of a pre-synthesis complex of proteins at the replication origin. The second of these factors, RF-A, is a complex of three polypeptides which may function as a eucaryotic SSB. The third, RF-C, is a factor which is required, with PCNA, for coordinated leading- and lagging-strand synthesis at the replication fork. Complete synthesis and segregation of the daughter molecules also requires the presence of topoisomerases I and II. These results suggest a model for DNA synthesis which involves multiple stages prior to and during replicative DNA synthesis.  相似文献   

18.
A poliovirus replicon, FLC/REP, which incorporates the reporter gene chloramphenicol acetyltransferase (CAT) in place of the region encoding the capsid proteins VP4, VP2, and part of VP3 in the genome of poliovirus type 3, has been constructed. Transfection of cells indicates that the FLC/REP replicon replicates efficiently and that active CAT enzyme is produced as a CAT-VP3 fusion protein. The level of CAT activity in transfected cells broadly reflects the level of FLC/REP RNA. A series of mutations in the 5' noncoding region of poliovirus type 3 were introduced into FLC/REP, and their effects were monitored by a simple CAT assay. These experiments helped to define further the stem-loop structures in the 5' noncoding region which are essential for RNA replication. The CAT-containing poliovirus replicon could also be packaged into poliovirus capsids provided by helper virus and was stable as a subpopulation of virus particles over at least four passages. The location of the CAT gene in FLC/REP excluded the presence of an encapsidation signal in the region of the poliovirus genome comprising nucleotides 756 to 1805.  相似文献   

19.
20.
A cloverleaf structure at the 5' terminus of poliovirus RNA binds viral and cellular proteins. To examine the role of the cloverleaf in poliovirus replication, we determined how cloverleaf mutations affected the stability, translation and replication of poliovirus RNA in HeLa S10 translation-replication reactions. Mutations within the cloverleaf destabilized viral RNA in these reactions. Adding a 5' 7-methyl guanosine cap fully restored the stability of the mutant RNAs and had no effect on their translation. These results indicate that the 5' cloverleaf normally protects uncapped poliovirus RNA from rapid degradation by cellular nucleases. Preinitiation RNA replication complexes formed with the capped mutant RNAs were used to measure negative-strand synthesis. Although the mutant RNAs were stable and functional mRNAs, they were not active templates for negative-strand RNA synthesis. Therefore, the 5' cloverleaf is a multifunctional cis-acting replication element required for the initiation of negative-strand RNA synthesis. We propose a replication model in which the 5' and 3' ends of viral RNA interact to form a circular ribonucleoprotein complex that regulates the stability, translation and replication of poliovirus RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号