首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aiming to get a better insight on the impact of regulatory CD25(+)CD4(+) T cells in tumor-immunobiology, a simple mathematical model was previously formulated and studied. This model predicts the existence of two alternative modes of uncontrolled tumor growth, which differ on their coupling with the immune system, providing a plausible explanation to the observation that the development of some tumors expand regulatory T cells whereas others do not. We report now the study of how these two tumor classes respond to different therapies, namely vaccination, immune suppression, surgery, and their different combinations. We show 1) how the timing and the dose applied in each particular treatment determine whether the tumor will be rejected, with or without concomitant autoimmunity, or whether it will continue progressing with slower or faster pace; 2) that both regulatory T cell-dependent and independent tumors are equally sensitive to vaccination, although the former are more sensitive to T cell depletion treatments and are unresponsive to partial surgery alone; 3) that surgery, suppression, and vaccination treatments, can synergistically improve their individual effects, when properly combined. Particularly, we predict rational combinations helping to overcome the limitation of these individual treatments on the late stage of tumor development.  相似文献   

2.
Regulatory T cells play essential roles in inducing self-tolerance by suppressing immune responses against self such as autoantigens or non-self-antigens such as tumor and pathogenic antigens. Despite the importance of CD4(+) regulatory T cells in many immune-related diseases, their antigen specificity and suppressive mechanisms remain elusive. This review discusses the natural ligands and their potential roles of tumor-specific CD4(+) regulatory T cells in cancer therapy.  相似文献   

3.
T cell immune responses are regulated by the interplay between effector and suppressor T cells. Immunization with Ag leads to the selective expansion and survival of effector CD4(+) T cells with high affinity TCR against the Ag and MHC. However, it is not known if CD4(+)CD25(+) regulatory T cells (T(reg)) recognize the same Ag as effector T cells or whether Ag-specific TCR repertoire modification occurs in T(reg). In this study, we demonstrate that after a primary Ag challenge, T(reg) proliferate and TCR repertoire modification is observed although both of these responses were lower than those in conventional T cells. The repertoire modification of Ag-specific T(reg) after primary Ag challenge augmented the total suppressive function of T(reg) against TCR repertoire modification but not against the proliferation of memory CD4(+) T cells. These results reveal that T cell repertoire modification against a non-self Ag occurs in T(reg), which would be crucial for limiting excess primary and memory CD4(+) T cell responses. In addition, these studies provide evidence that manipulation of Ag-specific T(reg) is an ideal strategy for the clinical use of T(reg).  相似文献   

4.
5.
6.
7.
TLR ligands are potent activators of dendritic cells and therefore function as adjuvants for the induction of immune responses. We analyzed the capacity of TLR ligands to enhance CD8+ T cell responses toward soluble protein Ag. Immunization with OVA together with LPS or poly(I:C) elicited weak CD8+ T cell responses in wild-type C57BL/6 mice. Surprisingly, these responses were greatly increased in mice lacking CD4+ T cells indicating the induction of regulatory CD4+ T cells. In vivo, neutralization of IL-10 completely restored CD8+ T cell responses in wild-type mice and OVA-specific IL-10 producing CD4+ T cells were detected after immunization with OVA plus LPS. Our study shows that TLR ligands not only activate the immune system but simultaneously induce Ag specific, IL-10-producing regulatory Tr1 cells that strongly suppress CD8+ T cell responses. In this way, excessive activation of the immune system may be prevented.  相似文献   

8.
The contribution of B lymphocytes as APCs for CD4+ T cell priming remains controversial, based on findings that B cells cannot provide the requisite ligating and costimulatory signals for naive T cells to be activated. In the current study, we have examined Ag-specific T:B cell collaboration under circumstances in which B cells take up Ag through Ig receptors in vivo. This results in their activation and an ability to effectively stimulate naive CD4+ T cells both in vitro and in vivo. The aim of this work was to establish some of the key molecular interactions, as well as kinetics, between Ag-specific T and B cells that enable this priming to take place. Our approach was to amplify the starting pools of both Ag-specific T and B cell populations in vivo to track directly the events during initial T:B cell collaborations. We show that the induction of optimal levels of T cell priming to a protein Ag requires the involvement of Ag-specific B cells. The interaction that results between Ag-specific T and B cells prevents the down-modulation of B7 costimulatory molecules usually observed in the absence of appropriate T cells. Moreover, this prevention in down-modulation is independent of CD40:CD40 ligand contact. Finally, we present data suggesting that once Ag-specific T and B cells interact, there is a rapid (1-2-h) down-regulation of antigenic complexes on the surface of the B lymphocytes, possibly to prevent them from engaging other T cells in the vicinity and therefore focus the initial interaction.  相似文献   

9.
In vivo electroporation dramatically enhances plasmid vaccine efficacy. This enhancement can be attributed to increased plasmid delivery and, possibly, to some undefined adjuvant properties. Previous reports have demonstrated CD8(+) T cell priming by plasmid vaccines is strongly dependent upon CD4(+) T cell help. Indeed, the efficacy of a plasmid vaccine expressing Escherichia coli beta-galactosidase was severely attenuated in MHC class II-deficient (C2D) mice. To determine whether electroporation could compensate for the absence of CD4(+) T cell help, C2D mice were immunized by a single administration of plasmid in combination with electroporation using two conditions which differed only by the duration of the pulse (20 or 50 msec). Both conditions elicited robust cellular and humoral responses in wild-type mice, as measured by IFN-gamma ELISPOT, anti-beta-galactosidase ELISA, and protection from virus challenge. In C2D mice, the cellular response produced by the vaccine combined with the 50-msec pulse, as measured by ELISPOT, was identical to the response in wild-type mice. The 20-msec pulse elicited a milder response that was approximately one-fifth that of the response elicited by the 50-msec pulse. By contrast, the 20-msec conditions provided comparable protection in both wild-type and C2D recipients whereas the protection elicited by the 50-msec conditions in C2D mice was weaker than in wild-type mice. Further investigation is required to understand the discordance between the ELISPOT results and outcome of virus challenge in the C2D mice. Nonetheless, using this technique to prime CD8(+) T cells using plasmid vaccines may prove extremely useful when immunizing hosts with limiting CD4(+) T cell function, such as AIDS patients.  相似文献   

10.
We have examined the development of self-peptide-specific CD4+ CD25+ regulatory T cells in lineages of transgenic mice that express the influenza virus PR8 hemagglutinin (HA) under the control of several different promoters (HA transgenic mice). By mating these lineages with TS1-transgenic mice expressing a TCR that recognizes the major I-E(d)-restricted determinant from HA (site 1 (S1)), we show that S1-specific T cells undergo selection to become CD4+ CD25+ regulatory T cells in each of the lineages, although in varying numbers. In some lineages, S1-specific CD4+ CD25+ regulatory T cells are highly abundant; indeed, TS1xHA-transgenic mice can contain as many S1-specific CD4+ T cells as are present in TS1 mice, which do not express the neo-self HA. In another lineage, however, S1-specific thymocytes are subjected to more extensive deletion and far fewer S1-specific CD4+ CD25+ regulatory T cells accumulate in the periphery. We show that radioresistant stromal cells can direct both deletion and CD4+ CD25+ regulatory T cell selection of S1-specific thymocytes. Interestingly, even though their numbers can vary, the S1-specific CD4+ CD25+ regulatory T cells in all cases coexist with clonally related CD4+ CD25- T cells that lack regulatory function. These findings show that the formation of the CD4+ CD25+ regulatory T cell repertoire is sensitive to variations in the expression of self-peptides.  相似文献   

11.
Activated T cells can acquire membrane molecules from APCs through a process termed trogocytosis. The functional consequence of this event has been a subject of debate. Focusing on transfer of peptide-MHC class II (MHC-II) complexes from APCs to CD4(+) T cells after activation, in this study we investigated the molecule acquisition potential of naturally occurring regulatory T cells (Tregs) and CD4(+) Th cells. We show that acquisition of membrane molecules from APCs is an inherent feature of CD4(+) T cell activation. Triggering of the TCR enables CD4(+) T cells to acquire their agonist ligands as well as other irrelevant membrane molecules from the interacting APCs or bystander cells in a contact-dependent manner. Notably, trogocytosis is a continuous process during cell cycle progression, and Th cells and Tregs have comparable capacity for trogocytosis both in vitro and in vivo. The captured peptide-MHC-II molecules, residing in sequestered foci on the host cell surface, endow the host cells with Ag-presenting capability. Presentation of acquired peptide-MHC-II ligands by Th cells or Tregs has either stimulatory or regulatory effect on naive CD4(+) T cells, respectively. Furthermore, Th cells with captured peptide-MHC-II molecules become effector cells that manifest better recall responses, and Tregs with captured ligands exhibit enhanced suppression activity. These findings implicate trogocytosis in different subsets of CD4(+) T cells as an intrinsic mechanism for the fine tuning of Ag-specific CD4(+) T cell response.  相似文献   

12.
T‐cell population consists of two major subsets, CD4+ T cells and CD8+ T cells, which can be distinguished by the expression of CD4 or CD8 molecules, respectively. Although they play quite different roles in the immune system, many of their basic cellular processes such as proliferation following stimulation are presumably common. In this study, we have carefully analyzed time–course of G0/1 transition as well as cell cycle progression in the two subsets of quiescent T‐cell population following in vitro growth stimulation. We found that CD8+ T cells promote G0/1 transition more rapidly and drive their cell cycle progression faster compared to CD4+ T cells. In addition, expression of CD25 and effects of its blockade revealed that IL‐2 is implicated in the rapid progression, but not the earlier G0/1 transition, of CD8+ T cells.  相似文献   

13.
Dendritic cell (DC)-based vaccination represents a promising approach to harness the specificity and potency of the immune system to combat cancer. Finding optimal strategies for tumor Ag preparation and subsequent pulsing of DC, as well as improving the immunogenicity of weak tumor Ags remain among the first challenges of this approach. In this report, we use a prophylactic vaccine consisting of DC loaded with whole, nonmanipulated B16-F10 melanoma cells that had been stressed by heat shock and gamma irradiation. Stressed B16-F10 cells underwent apoptosis and were internalized by bone marrow-derived DC during coculture. Surprisingly, coculture of DC with stressed B16-F10 undergoing apoptosis and necrosis did not induce DC maturation. However, a marked retardation in tumor growth was observed in C57BL/6 mice immunized using DC loaded with stressed B16-F10 cells and subsequently challenged with B16-F10 cells. Growth retardation was further increased by treating DC with LPS before in vivo administration. In vivo depletion studies revealed that both CD8(+) and CD4(+) T cells played a critical role in retarding tumor growth. In addition, treatment with anti-CD25 Ab to deplete CD4(+)CD25(+) regulatory T cells before DC vaccination considerably improved the effect of the vaccine and allowed the development of long-lived immune responses that were tumor protective. Our results demonstrate that depletion of regulatory T cells is an effective approach to improving the success of DC-based vaccination against weakly immunogenic tumors. Such a strategy can be readily applied to other tumor models and extended to therapeutic vaccination settings.  相似文献   

14.
CD4+CD25+ T regulatory cells (Tregs) can actively suppress immune responses and thus have substantial therapeutical potential. Clinical application is, however, frustrated by their scarcity, anergic status, and lack of defined specificity. We found that a single injection of a small number of expanded but not fresh HY-specific Tregs protected syngeneic male skin grafts from rejection by immune-competent recipients. The expanded Tregs were predominantly located in the grafts and graft-draining lymph nodes. In vitro expanded Tregs displayed a phenotype of CD25highCD4lowFoxp3+CTLA4+, and also up-regulated IL10 and TGFbeta while down-regulating IFN-gamma, GM-CSF, IL5, and TNF-alpha production. Furthermore, expanded Tregs appeared to express a reduced level of Foxp3, which could be prevented by adding TGFbeta to the culture, and they also tended to lose Foxp3 following the repeated stimulation. Finally, a proportion of expanded HY-specific Tregs secreted IL2 in response to their cognate peptide, and this finding could be confirmed using Tregs from Foxp3GFP reporter mice. We not only demonstrated that expanded Tregs are superior to fresh Tregs in suppressing T cell responses against alloantigens, but also revealed some novel immunobiological properties of expended Tregs which are very instructive for modifying current Treg expansion procedures.  相似文献   

15.
CD4+CD25+ regulatory T cells in HIV infection   总被引:9,自引:0,他引:9  
The immune system faces the difficult task of discerning between foreign, potentially pathogen-derived antigens and self-antigens. Several mechanisms, including deletion of self-reactive T cells in the thymus, have been shown to contribute to the acceptance of self-antigens and the reciprocal reactivity to foreign antigens. Over the last decade it has become increasingly clear that CD4(+)CD25(+) T(Reg) cells are crucial for maintenance of T cell tolerance to self-antigens in the periphery, and to avoid development of autoimmune disorders. Recently, evidence has also emerged that demonstrates that CD4(+)CD25(+) T(Reg) cells can also suppress T cell responses to foreign pathogens, including viruses such as HIV. In this article we review the current knowledge and potential role of CD4(+)CD25(+) T(Reg) cells in HIV infection.  相似文献   

16.
Rapamycin is an immunosuppressive drug currently used in different clinical settings. Although the capacity of rapamycin to inhibit the mammalian target of rapamycin serine/threonine protein kinase and therefore T cell cycle progression is well known, its effects are complex and not completely understood. It has been reported recently that TCR-mediated stimulation of murine CD4+ T cells in the presence of rapamycin results in increased proportions of CD4+ T cells with suppressive functions, suggesting that the drug may also exert its immunosuppressive activity by promoting the selective expansion of naturally occurring CD4+ regulatory T cells (Treg). In this study, we show that stimulation of human circulating CD4+ T cells in the presence of rapamycin results indeed in highly increased suppressor activity. By assessing the effect of rapamycin on the growth of nonregulatory and Treg populations of defined differentiation stages purified ex vivo from circulating CD4+ T cells, we could demonstrate that this phenomenon is not due to a selective expansion of naturally occurring Tregs, but to the capacity of rapamycin to induce, upon TCR-mediated stimulation, suppressor functions in conventional CD4+ T cells. This condition, however, is temporary and reversible as it is dependent upon the continuous presence of rapamycin.  相似文献   

17.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

18.
A panel of seven mouse splenic macrophage cell lines, derived from cloned progenitors, was compared for their ability to present antigen to Th1 or Th2 helper T cell lines and hybridomas, as well as to naive T cells, and to provide accessory cell function for the synthesis of antibody from primed B cells. One of the cell lines expressed MHC class II molecules and was the only line with constitutive antigen-presenting activity for Th1 cells. It may represent a subset of splenic macrophages responsible for the activation of naive Th1 helper cells in situ. The remaining six cell lines responded to INF-gamma by up-regulating their class II expression and acquiring Th1 antigen-presenting activity. They may represent cells which, in situ, lack constitutive antigen-presenting activity but are promoted to presenting status by Th1-derived INF-gamma. Five of the cell lines provided accessory cell function to Th2 cells, as indicated by antibody synthesis in suspensions of spleen cells from primed mice depleted of their antigen-presenting cells. One of the cell lines lacking accessory cell activity had constitutive antigen-presenting activity for Th1 cells. This reciprocal expression of antigen-presenting activity supports the idea that Th1 and Th2 helper cells are activated by different antigen-presenting cells. Finally, the cell lines differed in their ability to constitutively induce an allogeneic response; a response that was limited to CD8+ T cells occurred in a CD4+ helper cell-independent manner and was unaffected by the addition of INF-gamma. The alloantigen-presenting macrophage cell lines also possessed the most efficient accessory cell activity for antibody synthesis. These cell lines, which represent a spectrum of antigen-presenting activities in the spleen afford models for defining the roles of macrophages in the induction of immune responses and for resolving issues concerning their development.  相似文献   

19.
We previously demonstrated that HIV envelope glycoprotein (Env), delivered in the form of a vaccine and expressed by dendritic cells or 293T cells, could suppress Ag-stimulated CD4(+) T cell proliferation. The mechanism remains to be identified but is dependent on CD4 and independent of coreceptor binding. Recently, CD4(+) regulatory T (Treg) cells were found to inhibit protective anti-HIV CD4(+) and CD8(+) T cell responses. However, the role of Tregs in HIV remains highly controversial. HIV Env is a potent immune inhibitory molecule that interacts with host CD4(+) cells, including Treg cells. Using an in vitro model, we investigated whether Treg cells are involved in Env-induced suppression of CD4(+) T cell proliferation, and whether Env directly affects the functional activity of Treg cells. Our data shows that exposure of human CD4(+) T cells to Env neither induced a higher frequency nor a more activated phenotype of Treg cells. Depletion of CD25(+) Treg cells from PBMC did not overcome the Env-induced suppression of CD4(+) T cell proliferation, demonstrating that CD25(+)FoxP3(+) Treg cells are not involved in Env-induced suppression of CD4(+) T cell proliferation. In addition, we extend our observation that similar to Env expressed on cells, Env present on virions also suppresses CD4(+) T cell proliferation.  相似文献   

20.
Thymus-derived CD4+ CD25+ T regulatory cells (Tregs) are essential for the maintenance of self-tolerance. What critical factors and conditions are required for the extra-thymic development of Tregs remains an important question. In this study, we show that the anti-inflammatory extracellular matrix protein, thrombospondin-1, promoted the generation of human peripheral regulatory T cells through the ligation of one of its receptor, CD47. CD47 stimulation by mAb or a thrombospondin-1 peptide induced naive or memory CD4+ CD25- T cells to become suppressive. The latter expressed increased amounts of CTLA-4, OX40, GITR, and Foxp3 and inhibited autologous Th0, Th1, and Th2 cells. Their regulatory activity was contact dependent, TGF-beta independent, and partially circumvented by IL-2. This previously unknown mechanism to induce human peripheral Tregs in response to inflammation may participate to the limitation of collateral damage induced by exacerbated responses to self or foreign Ags and thus be relevant for therapeutic intervention in autoimmune diseases and transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号