首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compound nature of EPSP occurring in response to stimulation of the sensorimotor area of the cerebral cortex and the association area of the parietal cortex was shown during acute experiments on cats anesthetized by pentobarbital using an intracellular recording technique. The monosynaptic nature of the two first components of EPSP produced by corticofugal impulses spreading at the average rate of 18.5 and 7.5 msec, respectively, was established. It is postulated that these EPSP components are produced by activating the slow conducting pyramidal and corticorubral neurons. In a portion of rubrospinal neurons the first component of EPSP produced by corticofugal impulses was marked by a fast-rising phase and reflected electrophysiological activation of axosomatic synapses. Findings are discussed with regard to mechanisms reorganizing cortical synaptic inputs to the red nucleus neurons.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 665–672, September–October, 1985.  相似文献   

2.
We studied the postsynaptic potentials evoked from 76 trigeminal motoneurons by stimulation of the motor (MI) and somatosensory (SI) cortex in the ipsilateral and contralateral hemispheres of the cat. Stimulation of these cortical regions evoked primarily inhibitory postsynaptic potentials (PSP) in the motoneuron of the masseter muscle, but we also observed excitatory PSP and mixed reactions of the EPSP/IPSP type. The average IPSP latent period for the motoneurons of the masseter on stimulation of the ipsilateral cortex was 6.1±0.3 msec, while that on stimulation of the contralateral cortex was 5.2±0.4 msec; the corresponding figures for the EPSP were 7.6±0.5 and 4.5±0.3 msec respectively. Corticofugal impulses evoked only EPSP and action potentials in the motoneurons of the digastric muscle (m. digastricus). The latent period of the EPSP was 7.6 msec when evoked by afferent impulses from the ipsilateral cortex and 5.4 msec when evoked by pulses from the contralateral cortex. The duration of the PSP ranged from 25 to 30 msec. Postsynaptic potentials developed in the motoneurons studied when the cortex was stimulated with a single stimulus. An increase in the number of stimuli in the series led to a rise in the PSP amplitude and a reduction in the latent periods. When the cortex was stimulated with a series of pulses (lasting 1.0 msec), the IPSP were prolonged by appearance of a late slow component. We have hypothesized that activation of the trigeminal motoneurons by corticofugal impulsation is effected through a polysynaptic pathway; each functional group of motoneurons is activated in the same manner by the ipsilateral and contralateral cortex. The excitation of the digastric motoneurons and inhibition of the masseter motoneurons indicates reciprocal cortical control of their activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 512–519, September–October, 1971.  相似文献   

3.
We studied the antidromic and synaptic potentials evoked from 32 digastric-muscle motoneurons by stimulation of the motor nerve to this muscle, different branches of the trigeminal nerve, and the mesencephalic trigeminal nucleus. Antidromic potentials appeared after 1.1 msec and lasted about 2.0 msec. Stimulation of the infraorbital, lingual, and inferior alveolar nerves led to development of excitatory postsynaptic potentials (EPSP) and action potentials in the motoneurons. The antidromically and synaptically evoked action potentials of the digastric-nerve motoneurons were characterized by weak after-effects. We were able to record EPSP and action potentials in two of the motoneurons investigated in response to stimulation of the mesencephalic trigeminal nucleus, the latent period being 1.3 msec. This indicates the existence of a polysynaptic connection between the mesencephalic-nucleus neurons and the digastric-muscle motoneurons. Eight digastric-muscle motoneurons exhibited inhibitory postsynaptic potentials (IPSP), which were evoked by activation of the afferent fibers of the antagonistic muscle (m. masseter). The data obtained indicate the presence of reciprocal relationships between the motoneurons of the antagonistic muscles that participate in the act of mastication.A. A. Bogomol'ts Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 52–57, January–February, 1971.  相似文献   

4.
Composite and unitary EPSPs of red nucleus neurons evoked by stimulation of the sensomotor and association parietal cortex and nucleus interpositus of the cerebellum were studied in acute experiments on cats anesthetized with pentobarbital. A monosynaptic connection was shown to exist between not only the sensomotor, but also the association cortex, and rubrospinal neurons, in which unitary EPSPs appeared during stimulation of the association cortex after a latent period of 1.5–2.7 msec, with a peak rise time of 1.1–3.1 msec and an amplitude of 0.22–0.65 mV. Analysis of the temporal characteristics of the unitary EPSP suggested that synapses formed by fibers from the association cortex occupy a position nearer the soma than synapses formed by axons of sensomotor cortical cells.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 67–74, January–February, 1984.  相似文献   

5.
Intracellular recording was employed in experiments on rats with the nervous system intact and after acute pyramidotomy to study the postsynaptic effects produced in the lumbar motoneurons on stimulation of the nucleus ruber. Stimulation of this nucleus with single stimuli and with a short series of stimuli caused excitatory and inhibitory postsynaptic potentials (EPSP and IPSP) to develop in the motoneurons. Most of the EPSP recorded were disynaptic, but response development involved a monosynaptic segmental delay in five of the 124 cells that exhibited EPSP. A capacity for high-frequency potentiation was a characteristic feature of the disynaptic excitatory and inhibitory effects. Transmembrane polarization of the motoneurons had a marked influence on the amplitude of the disynaptic EPSP and IPSP. The properties of the disynaptic rubrospinal influences were similar to those described for the cat.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 266–273, May–June, 1971.  相似文献   

6.
Electrical activity of flexor and extensor alpha-motoneurons of the lumbar segments of cat's spinal cord as recorded intracellularly during electric stimulation of afferents of the contralateral posterior limb. Contralateral postsynaptic potentials (PSP) were shown to be evoked by activation of cutaneous and high-threshold muscle afferents. The high-threshold afferents of various muscle nerves participate to varying degrees in the generation of contralateral PSP. Contralateral inhibitory postsynaptic potentials (IPSP) were recorded in both flexor and extensor motoneurons along with contralateral excitatory postsynaptic potentials (EPSP). There are no fundamental differences in their distribution between flexor and extensor neurons. Inhibitory influences as a rule are predominant in both during the first 20 msec, and EPSP are predominant in the interval between 20 and 100 msec. The balance of excitatory and inhibitory pathway activity was found to be not as stable as that of the homolateral pathways.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 418–425, July–August, 1971.  相似文献   

7.
It was established in experiments on rhesus monkeys by intracellular recording and computer averaging that fast-conducting reticulo- and vestibulospinal fibers form monosynaptic excitatory links with lumbar alpha-motor neurons. The monosynaptic bulbospinal effects are retained after sectioning of the pyramids or after chronic destruction of the motor cortex. The mean amplitude of the reticulomotor neuronal EPSP is less than that of the corticomotor neuronal EPSP, however, the mean amplitudes of the EPSP of individual motor neurons can reach similar values. In contrast to the corticomotor neuronal projections, the bulbomotor neuronal projections are directed primarily toward the motor neurons of the proximal muscles. In addition to monosynaptic EPSP, reticulo- and vestibulospinal impulses evoke disynaptic EPSP and IPSP in the lumbar motor neurons of monkeys which are very similar to the disynaptic effects found in subprimates.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 408–417, July–August, 1971.  相似文献   

8.
Intracellular responses of neurons of the suprasylvian fissure to intracortical stimulation before and during topical cortical strychnine application was studied in experiments on immobilized, unanesthetized cats (a local anesthetic was used). Untreated cortical neurons responded to intracortical stimulation with a monosynaptic excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). Application of strychnine evoked epileptiform population activity and paroxysmal depolarizations of neuronal membrane potentials (MPs), followed by hyperpolarization. Increased hyperpolarizations, and the prolonged duration of their summation were responsible for an increased MP and reduced or abolished tonic spike activity. Intracellular application (as a result of diffusion from the microelectrode) of ethyleneglycoltetraacetate (EGTA) that blocked the calcium-dependent potassium membrane conductance (gK(Ca)) abolished the hyperpolarization. The development of epileptiform activity was accompanied by reduction of the IPSP, and an increase in the monosynaptic EPSP. The role of gK(Ca) and postsynaptic inhibition in epileptogenesis is discussed.I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 24, No. 6, pp. 684–691, November–December, 1992.  相似文献   

9.
The electrical reactions of 294 neurons of the auditory cortex to a click were recorded in experiments on cats immobilized with tubocurarine (174 intra- and 120 extracellularly). The value of the membrane potential varied from 30 to 70 mV with intracellular leads. The following types of reactions were obtained (the number of neurons is given in parentheses): a peak without slow oscillations in the membrane potential (4), EPSP (3), EPSP-peak (6), EPSP-peak-IPSP (17), EPSP-IPSP (9), primary IPSP (114, including 23 with an after-discharge). Twenty one neurons did not react to a click. The amplitude of the sub-threshold EPSP was 1–1.5 mV, the duration of the ascending part was about 10 and of the descending part 20–30 msec. The peak potential on the ascending part of the EPSP developed at the critical level of 3–4 mV. The amplitude of the peaks varied from several millivolts to 50–60. In 17 neurons prolonged hyperpolarization having all the properties of an IPSP, developed after the peak. The amplitude of these IPSP varied in different neurons from 1 to 10 mV and the duration varied from 20 to 80 msec. IPSP without preceding excitation of the given neuron were the predominant types of reaction. The latent period of these primary IPSP varied from 7 to 20 msec and the amplitude from 1 to 15 msec with a duration of 30–200, more frequently 80–100 msec. It is suggested that two types of inhibition develop in neurons of the auditory cortex in response to a click: recurrent and afferent. The functional significance of the first consists in limiting the duration of the discharge in the reacting neurons, the second prevents the development of excitation in adjacent neurons, thereby limiting the area of neuronal activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 339–349, July–August, 1971.  相似文献   

10.
A microelectrode investigation was made of responses of 72 physiologically identified neurons of the ventral posterior (VP) and 116 neurons of the ventral lateral (VL) thalamic nuclei to electrical stimulation of the reticular (R) thalamic nucleus. Mainly those neurons of VP and VL (73.7 and 86.2% respectively) which responded to stimulation of the first motor area and nucleus interpositus of the cerebellum responded to stimulation of R; 19.8% of VL neurons tested responded to stimulation of R by an antidromic action potential with latent period of 0.5–2.0 msec and 46.6% of neurons responded by orthodromic excitation; 23% of orthodromic responses had a latent period of 0.9–3.5 msec and 77% a latent period of 4.0–21.0 msec; 19.8% of VL neurons tested were inhibited. Among IPSPs recorded only one was monosynaptic (1.0 msec) and the rest polysynaptic. It is postulated that both R neurons are excitatory and that the inhibition which develops in VL neurons during stimulation of R are connected mainly with activation of inhibitory interneurons outside the reticular nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 477–485, September–October, 1977.  相似文献   

11.
Responses of 98 auditory cortical neurons to electrical stimulation of the medial geniculate body (MGB) were recorded (45 extracellulary, 53 intracellularly) in experiments on cats immobilized with tubocurarine. Responses of the same neurons to clicks were recorded for comparison. Of the total number of neurons, 75 (76%) responded both to MGB stimulation and to clicks, and 23 (24%) to MGB stimulation only. The latent period of extracellularly recorded action potentials of auditory cortical neurons in response to clicks varied from 7 to 28 msec (late responses were disregarded), and that to MGB stimulation varied from 1.5 to 12.5 msec. For EPSPs these values were 8–13 and 1–4 msec respectively. The latent period of IPSPs arising in response to MGB stimulation varied from 2.2 to 6.5 msec; for 34% of neurons it did not exceed 3 msec. The difference between the latent periods of responses to clicks and to MGB stimulation varied for different neurons from 6 to 21 msec. Responses of 11% of neurons to MGB stimulation, recorded intracellularly, consisted of sub-threshold EPSPs, while responses of 23% of neurons began with an EPSP which was either followed by an action potential and subsequent IPSP or was at once cut off by an IPSP; 66% of neurons responded with primary IPSPs. Neurons responding to MGB stimulation by primary IPSPs are distributed irregularly in the depth of the cortex: there are very few in layers III and IV and many more at a depth of 1.6–2 mm. Conversely, excited neurons are predominant in layer III and IV, and they are few in number at a depth of 1.6–2 mm. It is concluded that the afferent volley reaching the auditory cortex induces excitation of some neurons therein and, at the same time, by the principle of reciprocity, induces inhibition of others. This afferent inhibition takes place with the participation of inhibitory interneurons, and in some cells the inhibition is recurrent. The existence of reciprocal relationships between neurons in different layers of the auditory cortex is postulated.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 23–31, January–February, 1972.  相似文献   

12.
In cats, we studied the influences of stimulation of the periaqueductal gray (PAG) and locus coeruleus (LC) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulations of the infraorbital nerve and ventroposteromedial nucleus of the thalamus) afferent inputs. Twelve cells activated exclusively by nociceptors and 16 cells activated by both nociceptive and non-nociceptive influences (hereafter, nociceptive and convergent neurons, respectively) were recorded intracellularly. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the latter, of significant duration, up to 200 msec) complex. Electrical stimulation of the PAG (which could itself evoke activation of the cortical neurons under study) resulted in long-term suppression of synaptic responses evoked by excitation of nociceptors (inhibition reached its maximum at a test interval of 600 to 800 msec). We observed a certain parallelism between conditioning influences of PAG activation and effects of systemic injections of morphine. Isolated stimulation of LC by a short high-frequency train of stimuli evoked primary excitatory responses (complex EPSPs) in a part of the examined cortical neurons, while in other cells high-amplitude and long-lasting IPSP (up to 120 msec) were observed. Independently of the type of the primary response to PAG stimulation, the latter resulted in long-term (several seconds) suppression of the responses evoked in cortical cells by stimulation of the nociceptive inputs. The mechanisms of modulatory influences coming from opioidergic and noradrenergic brain systems to somatosensory cortex neurons activated due to excitation of high-threshold (nociceptive) afferent inputs are discussed.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 61–73, January–February, 2005.  相似文献   

13.
Synaptic effects of the red nucleus on motoneurons of the facial nucleus were studied in cats. Impulses from the red nucleus activate motoneurons innervating the auricular, buccal, and orbicularis oculi muscles. Monosynaptic EPSPs appeared in all motoneurons which responded to stimulation. Their mean latent period was 1.5±0.04 msec, duration 12.3 ± 0.34 msec, and rise time between 1.5 and 3.2 msec. Repetitive stimulation of the red nucleus led to marked facilitation of the testing EPSP. Facilitation was maximal when the interval between stimuli was 3.5 msec; it was reduced by either a decrease or an increase in the interval. The functional role of the monosynaptic connections of neurons of the red nucleus and of the facial motoneurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 272–279, May–June, 1972.  相似文献   

14.
Single unit responses of the first (SI) and second (SII) somatosensory areas to stimulation of the ventroposterior thalamic nucleus (VP) were investigated in cats immobilized with D-tubocurarine. In response to VP stimulation 12.0% of reacting SI neurons and 9.5% of SII neurons generated an antidromic spike. In most antidromic responses of both SI and SII neurons the latent period did not exceed 1.0 msec. The minimal latent period of spike potentials during orthodromic excitation was 1.5 msec in SI and 1.7 msec in SII. Neurons with an orthodromic spike latency of not more than 3.0 msec were more numerous in SI than those with a latency of 3.1–4.5 msec. The ratio between the numbers of neurons of these two groups in SII was the opposite. In SII there were many more neurons with a latency of 5.6–8.0 msec than in SI. EPSPs appeared after a latent period of 1.1–9.0 msec in SI and of 1.4–6.6 msec in SII. The latent period of IPSPs was 1.5–6.8 msec in SI and 2.2–9.4 msec in SII. The relative importance of different pathways for excitatory and inhibitory influences of VP on SI and SII neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 2, pp. 115–121, March–April, 1976.  相似文献   

15.
Using the method of microelectrode (intracellular and extracellular) recording, the mechanism of inhibition following reflex discharge in interneurons of the lumbosacral section of the spinal cord of cats on activation of cutaneous and high-threshold muscle afferents was studied. It was shown that the postdischarge depression of the reflex responses 10–20 msec after the moment of activation of the neuron is due to afterprocesses in the same neuron and presynaptic pathways. The depression of spike potentials from the 20th to the 100th msec is produced by inhibitory postsynaptic potentials (IPSP). During the development of IPSP the inhibition of spike potentials can be due to both a decrease of the depolarization of the postsynaptic membrane below the critical threshold and a decrease of sensitivity of the cell membrane to the depolarizing action of the excitatory postsynaptic potential (EPSP). At intervals between the stimuli of 30–100 msec the duration of EPSP after the first stimulus does not differ from that after the second stimulus. Hence, it is suggested that the presynaptic mechanisms do not play an essential part in this type of inhibition of interneurons. The inhibition following the excitation favors the formation of a discrete message to the neurons of higher orders.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 3–9, January–February, 1970.  相似文献   

16.
In response to stimulation of the posterior lateral nucleus in unanesthetized cats immobilized with D-tubocurarine an evoked potential consisting of three components with a latent period of 3–5 msec appeared in area 5b of the suprasylvian gyrus. All three components were reversed at about the same depth in the cortex (1500–1600 µ). Reversal of the potential shows that it is generated in that area by neurons evidently located in deeper layers of the cortex and is not conducted to it physically from other regions. Responses of 53 spontaneously active neurons in the same area of the cortex to stimulation of the posterior lateral nucleus were investigated. A characteristic feature of these reponses was that inhibition occurred nearly all of them. In 22 neurons the responses began with inhibition, which lasted from 30 to 400 msec. In 30 neurons inhibition appeared immediately after excitation while one neuron responded by excitation alone. The latent periods of the excitatory responses varied from 3 to 28 msec. The short latent period of the evoked potentials and of some single units responses (3–6 msec) confirms morphological evidence of direct connections between the posterior lateral nucleus and area 5b of the suprasylvian gyrus. Repetitive stimulation of that nucleus led to strengthening of both excitation and inhibition. Influences of the posterior lateral nucleus were opposite to those of the specific nuclei: the posterior ventrolateral nucleus and the lateral and medial geniculate bodies. Stimulation of the nonspecific reticular nucleus, however, evoked discharges from neurons like those produced by stimulation of the posterior lateral nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 502–509, September–October, 1973.  相似文献   

17.
Extracellular and intracellular single unit responses of neurons of the auditory cortex to electrical stimulation of geniculocortical fibers (GCF) were recorded in experiments on cats immobilized with tubocurarine. The latent period of responses of 15% of neurons to GCF stimulation was 0.3–1.5 msec. It is postulated that they were excited anti-dromically. The latent period of spikes generated by neurons responding to GCF stimulation orthodromically varied from 1.6 to 12 msec. In 28.6% of neurons the latent period was 1.6–2.5 msec. It is postulated that these neurons were excited monosynaptically. Intracellular recording revealed primary IPSPs in response to GCF stimulation in 63.3% of neurons, a brief EPSP followed by a prolonged IPSP in 17.7%, an EPSP-spike-IPSP complex in 12.3%, and subthreshold EPSPs in 7% of neurons. The latent period of the primary IPSPs varied from 1.8 to 11 msec, being 1.8–3.7 in 72%, 3.8–5.7 in 20.0%, and 5.8–11 msec in 8.0% of neurons. The latent period of responses beginning with an EPSP was 1–4 msec (mean 1.8 msec). Orthodromic responses arising 3–10 msec after the antidromic response, and consisting of 3–5 spikes, were recorded in some antidromically excited neurons. Hypotheses regarding the functional organization of the auditory cortex and mechanisms of inhibition in its neurons are put forward on the basis of the results obtained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 227–235, May–June, 1972.  相似文献   

18.
Intra- and extracellular response in area CA1 to stimulation of two independent afferent inputs, one a priming or conditioned and the other a test or primed input (C1 and C2, respectively) were recorded in surviving murine hippocampal slices. Duration and amplitude of test field potentials (FP) and of excitatory postsynaptic potentials (EPSP), were measured, as well as amplitude of "fast" and "slow" components of inhibitory postsynaptic potentials or stimulation varying between 0 and 1 sec. Conditioning brought about an increase in the duration of FP, in duration and amplitude of EPSP, and suppression of IPSP at intervals of between 50 and 500 msec peaking at 200 msec (i.e., priming effect). These changes correlated with level of IPSPb in response to conditioned stimuli. The most pronounced effect could be seen in neurons manifesting hyperpolarizing IPSP in response to test stimuli. Suppression of test IPSPa after superposition on IPSPb is thought to bring about the increase in test FP and EPSP seen during priming.Institute for Brain Research, All-Union Mental Health Research Center, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 6, pp. 730–739, November–December, 1990.  相似文献   

19.
We studied synaptic processes in motoneurons of thoracic segments (TIX-TXI) evoked by stimulation of the medial area of the giant-cell reticular nucleus in decerebrated cats. Monosynaptic EPSP were recorded in the majority of investigated motoneurons upon activation of the most rapidly conducting reticulospinal fibers. In some cells, such monosynaptic EPSP were accompanied by late EPSP or IPSP. Amplitude of monosynaptic EPSP attained 5 mV, but this value usually was insufficient for development of an action potential. Upon summation of single monosynaptic EPSP, the membrane potential reached the critical level and an action potential arose in the motoneuron. The efficiency of summary processes evoked by stimulation of the reticular formation exceeded the intensity of synaptic processes that arise in thoracic motoneurons on stimulating the nucleus of Deiters. Functional characteristics of reticular and vestibular monosynaptic EPSP are discussed in the work.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 243–252, November–December, 1969.  相似文献   

20.
Postsynaptic potentials produced by stimulating three sites of the midbrain superior colliculus were examined in motoneurons innervating the sternocleidomastoid, the trapezius, and the platysma cervical muscles in anesthetized cats. Stimulating the ipsilateral colliculus produced EPSP in the motoneurons as well as action potentials with a latency of 1.5–3.5 msec, averaging 2.6 ± 0.1 msec. Stimulation of the contralateral colliculus evoked EPSP with a latency of 1.5–3.2 msec and averaging 2.1 ± 0.1 msec together with IPSP with latency ranging from 2.6 to 5.0 msec. It is postulated that these postsynaptic responses are both monosynpatic and bisynaptic in nature. This type of synaptic action is assumed to be one of the mechanisms responsible for coordinated head movements produced by tectofugal impulses.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 197–202, March–April, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号