首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crossflow filtration of yeast broth cultivated in molasses   总被引:3,自引:0,他引:3  
A broth of yeast cells cultivated in molasses was crossfiltered with a thin-channel module. The permeation flux gradually decreased at a constant cell concentration. The flux was much lower than that obtained for yeast broth cultivated in yeast extract, polypeptone, and dextrose (YPD) medium during the filtration. The flux did not depend on the membrane pore size (0.45 to 5 mum). The steady-state flux was one-twentieth that calculated for a cake filtration mode from the amount of cake per unit filtration area and the specific resistance of the cake measured in a dead-end filtration apparatus. The lower flux was due to small particles (most of which were less than 1 mum in diameter) in the molasses. The mehanism of crossflow filtration of broths of yeast cells cultivated in molasses was clarified by analysis of the change in flux with time and observations with scanning electron microscopy. At the initial stage of crossflow filtration the yeast cells and particles from the molasses were deposited on the membrane to form the molasses were deposited on the membrane to form a cake in a similar way to dead-end filtration. After the deposition of cells onto the membrane ceased, the fine particles from molasses formed a thin layer, which had higher resistance than the cake formed next to the membrane. The backwashing method was effective to increase the flux. The flux increased low when the pore size was 0.45 to 0.08 mum, but using larger pores of 3 to 5 mum it returned almost to the bases line. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
This study deals with the use of an upward gas/liquid slug flow to reduce tubular mineral membrane fouling. The injection of air into the feedstream is designed to create hydrodynamic conditions that destabilize the cake layer over the membrane surface inside the filtration module complex. Experimental study was carried out by filtering a biological suspension (yeast) through different tubular mineral membranes. The effects of operating parameters, including the nature of the membrane, liquid and gas flowrates, and transmembrane pressure, were examined. When external fouling was the main limiting phenomenon, flux enhancements of a factor of three could be achieved with gas sparging compared with single liquid phase crossflow filtration. The economic benefits of this unsteady technique have also been examined. To investigate the possibility of long-term operation of the two-phase flow principle, dense cell perfusion cultures of Saccharomyces cerevisiae were carried out in a fermentor coupled with an ultrafiltration module. The air injection allowed a high and stable flux to be maintained over 100 h of fermentation, with a final cell concentration of 150 g dry weight/L. At equal biomass level, a twofold gain in flux could be attained compared with classical steady crossflow filtration at half the cost.  相似文献   

3.
Summary The specific resistance of the cake formed in the crossflow filtration of Escherichia coli was higher than that formed in the dead-end filtration. The scanning electronmicrographs revealed that the cells in the cake formed in the crossflow filtration were oriented in the direction of the circulation flow, while the cells deposited at random in the dead-end filtration. The shear-induced arrangement of cells might increase the specific resistance of the cake in crossflow filtration.  相似文献   

4.
The periodical stopping of permeation flow was applied to increase the permeation flux in crossflow filtration of commercially available baker's yeast cell suspension. The permeation flux after 3 h filtration in the crossflow filtration increased to 8 x 10(-5) m(3) /m(2) s (290 L/m(2) h) from 2 x 10(-5) m(3)/m(2) s (72 L/m(2) h) by applying the periodical stopping of permeation. Introduction of air bubbles during the stopping period of permeation further increased the flux.(c) John Wiley & Sons, Inc.  相似文献   

5.
Filtration of an isotonic suspension of baker's yeast through a 0.45‐μm membrane was studied at two different pressures, 40 and 80 kPa, for yeast concentrations ranging from 0.14 to 51 kg/m3 (dry weight). For a yeast volume fraction above 0.06 (~21.8 kg/m3), the porosity of the yeast cake is less dependent on the suspension concentration. For highly diluted suspensions, the specific cake resistance approaches a minimum that depends on the filtration pressure. Correlation functions of cake porosity and specific cake resistance were obtained for the concentration range investigated showing that the Kozeny–Carman coefficient increases when the applied pressure increases. Both filtration pressure and slurry concentration can be process controlled. In the range of moderate yeast concentration, the filtrate flux may be increased by manipulating the filtration pressure and the slurry concentration, thereby improving the overall process efficiency. The complex behavior of yeast cakes at high slurry concentration can be described by a conventional model as long as part of yeast cells are assumed to form aggregates, which behave as single bigger particles. The aggregation effect may be accounted for using a binary mixture model. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

6.
A novel method of producing controlled vortices was used to reduce both concentration polarization and membrane fouling during microfiltration of Saccharomyces cerevisiae broth suspensions. The method involves flow around a curved channel at a sufficient rate so as to produce centrifugal instabilities (called Dean vortices). These vortices depolarize the build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up during microfiltration of 0 to 0.55 dry wt% yeast broth were investigated. Flux improvements of over 60% for 0.25 dry wt% yeast broth for flow with over that without Dean vortices were observed. This beneficial effect increased with increasing retentate flow rate and increasing transmembrane pressure and decreased with increasing concentration of suspended matter. Similar behavior was observed whether the cells were viable of killed. the improvement in flux in the presence over that in the absence of vortices correlated well with centrifugal force or azimuthal velocity squared. The relative cake resistances increased with reservoir yeast concentration. These values with vortices increased from 62% to 75% of that without vortices with increasing yeast concentration. The ratio of the cake thicknesses in the limiting case (at high feed concentration) was 3.25. These results suggest that self-cleaning spiral vortices could be effective in maintaining good and steady microfiltration performance with cell suspensions other than those tested. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
The influence of several operating parameters on the critical flux in the separation of lactic acid-producing bacteria from fermentation broth was studied using a ceramic microfiltration membrane equipped with a permeate pump. The operating parameters studied were crossflow velocity over the membrane, bacterial cell concentration, protein concentration, and pH. The influence of the isoelectric point (IEP) of the membrane was also investigated. In the interval studied (5.3-10.8 m/s), the crossflow velocity had a marked effect on the critical flux. When the crossflow velocity was increased the critical flux also increased. The bacterial cells were retained by the membrane and the concentration of bacterial cells did not affect the critical flux in the interval studied (1.1-3.1 g/L). The critical flux decreased when the protein concentration was increased. It was found that the protein was adsorbed on the membrane surface and protein retention occurred even though the conditions were such that no filter cake was present on the membrane surface. When the pH of the medium was lowered from 6 to 5 (and then further to 4) the critical flux decreased from 76 L/m(2)h to zero at both pH 5 and pH 4. This was found to be due to the fact that the lowering in pH had affected the physiology of the bacterial cells so that the bacteria tended to adhere to the membrane and to each other. The critical flux, for wheat flour hydrolysate without particles, was much lower (28 L/m(2)h) when using a membrane with an IEP of 5.5 than the critical flux of a membrane with an IEP at pH 7 (96 L/m(2)h). This was found to be due to an increased affinity of the bacteria for the membrane with the lower IEP.  相似文献   

8.
Suzuki Y  Esumi Y  Koshino H  Ueki M  Doi Y 《Phytochemistry》2008,69(2):491-497
A short-chain poly3-hydroxybutyrate including four comonomers, originating from a complex with calcium polyphosphate, was isolated from commercial baker's yeast cells (Saccharomyces cerevisiae) and characterized as the second complexed poly(3-hydroxyalkanoate) (cPHA) in eukaryotes. The number-average molecular weight of 4982.5 Da with a polydispersity index of 1.11 was much lower than that of beet cPHA previously isolated. End-group analysis suggested that at least 60% of the molecules form the cyclic structures. Here, the organism-dependent structural diversity of cPHAs was completely established. It was also found that a change of culture medium influences the molecular weight but not the polydispersity of baker's yeast cPHA.  相似文献   

9.
A filtration rig equipped with a tubular alumina membrane was used to study the performance of crossflow microfiltration of Lactobacillus helveticus. Experiments were performed at constant permeation flux. High cell concentrations and fast transient conditions to the stationary J adversely affected permeability. Membrane fouling was due to a fast irreversible layer formation and to a reversible cell cake. This microbial deposit characteristics were dependent on the ratio permeation flux/wall shear stress, J/tau(w). Fouling was faster and more severe when J/tau(w) was greater than a critical value of 1.15 L(-1) . h(-1) . m(-2) . Pa(-1). The disordered structure of this cell cake seemed to lead to a macromolecule deposit between the cells which adversely affected the membrane permeability. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
1. Total ATPase levels were determined in homogenate fractions of baker's yeast, Saccharomyces cerevisiae K and Rhodotorula glutinis. The maximum ATPase activities in 8000 X g supernatant of the three yeast strains were 6.0, 1.9, and 2.2 mmol Pih-1 (gDS)-1, respectively; the activities in the sediment were somewhat higher. Exponential cells of S. cerevisiae K and R. glutinis exhibited higher ATPase levels than did the stationary cells. 2. The total ATPase activity in both yeast species showed a maximum at ph 6.8 a minimum at pH 7.2, and another broader masimum around pH 8.0. 3. No significant NaK-ATPase activity was detected in baker's yeast, in either the exponential or the stationary cells of R. glutinis, and in exponential S. cerevisiae K cells in the pH range of 6.0-9.3. 4. Stationary cells of S. cerevisiae K exhibited, at pH 7.0-8.5, A Na,K-ATPase activity attaining 9% of total ATPase level. 5.3 X 10(-3) M phenylmethyl sulphonyl fluoride had no effect on the total ATPase level in S. cerevisiae and inhibited the activity in R. glutinis by 25%; it did not bring forth any Na,K-ATPase activity apart from that found in its absence. 6. 1.5 M urea lowered the ATPase activity in R. glutinis by 68% but had no effect on S. cerevisiae cells. 10(-5) M dicyclohexylcarbodiimide suppressed the ATPase activity in S. cerevisiae and R. glutinis by 74 and 79%, respectively. Neither agent revealed and additional Na,K-ATPase activity. 7. The comparison of Na,K-ATPase activities with data on K+ fluxes across the yeast plasma membrane suggested that even with the lower flux values the Na,K-ATPase, even if present, would account for a mere 40% of transported ions. The results imply that the active ion transport in yeasts is energized by mechanisms other than the Na,K-ATPase.  相似文献   

11.
The dynamics of galactose metabolism in Saccharomyces cerevisiae was studied by analyzing the metabolic response of the CEN.PK 113-7D wild-type strain when exposed to a galactose pulse during aerobic growth in a galactose-limited steady-state cultivation at a dilution rate of 0.097 h(-1). A fast sampling technique and subsequent methanol-chloroform/solid phase extractions were applied for in vivo measurements of the dynamic changes of the AMP, ADP, ATP levels and the sugar phosphates of the Leloir pathway. The ATP level was found to be significantly lower for yeast growing under galactose limitation (0.37 +/- 0.05 micromol/g CDW) than what has been reported for growth under glucose limitation. The galactose pulse of 5.58 mM was consumed within 40 min (t = 40) and 7 min after the pulse was added cell growth stopped. Subsequently, the cells started to grow and at t = 30 the specific growth rate had recovered to half the steady-state growth rate (0.047 h(-1)). To evaluate the change in flux distribution at steady state and during the galactose transient, a stoichiometric model describing the aerobic metabolism of S. cerevisiae was set up for quantification of the metabolic fluxes. At t = 7 the flux entering the TCA cycle was low and acetate and ethanol started to be excreted to the extracellular medium. During recovery of cell growth the flux entering the TCA cycle increased again, and at t = 30 this flux exceeded the corresponding steady-state flux. During the pulse an enhanced level of Gal-1P was measured, which may be responsible for a toxic metabolic response in S. cerevisiae. The increase in the Gal-1P concentration is intensified by the low affinity of Gal7 towards Gal-1P and, hence, under the physiological conditions examined Gal7 seems to exert control over flux through the Leloir pathway.  相似文献   

12.
Summary A yeast lytic enzyme was covalently immobilized on an enteric coating polymer, Eudragit S, that is reversibly soluble and insoluble (S-IS) depending on the pH of the reaction medium. The yeast lytic enzyme immobilized on Eudragit S (Y-E) showed a sharp response of solubility to slight changes in pH without decrease in enzymatic activity. The specific activity per amount of enzyme protein of Y-E for dry yeast cells was about two-thirds that of the native enzyme. In both lysis reactions of dry and pressed baker's yeast cells, changing the pH of the reaction medium from 7.0 to 4.8 at an appropriate interval allows the insoluble Y-E and the reaction products (soluble protein for dry yeast cells and invertase and soluble protein for pressed baker's yeast cells) to be repeatedly separated. The reaction method using a reversible S-IS enzyme is a promising procedure for repeated use of the enzyme in a heterogeneous reaction system containing yeast cells as a substrate.  相似文献   

13.
Fouling of the membrane by cell and protein mixtures can result in severe flux declines, leading to the eventual need to clean or replace the membrane. In this study multi-photon microscopy, a fluorescence-based technique is used to 3-D image in situ the fouling of microfiltration membranes by suspensions containing combinations of washed yeast, bovine serum albumin (BSA) and ovalbumin. Appropriate fluorescent labelling allows the three foulant species to be clearly identified. Images correlate well with filtration data and clearly show the cake of yeast cells capturing protein aggregates. The proteins exhibited very different filtration behaviour. When filtering washed yeast together with ovalbumin and/or a 50:50 mixture by mass of BSA and ovalbumin, the ovalbumin fouling dominates the system. Capture of aggregates by the cake did not reduce fouling of the membrane by the protein and increased the resistance of the cake. For mixtures of BSA and washed yeast, the presence of a cake of yeast cells did reduce fouling of the membrane by the protein, however, the extra resistance due to the cake resulted in a flux lower than that when filtering BSA alone.  相似文献   

14.
The permeabilization of Saccharomyces cerevisiae (baker's yeast), either before or after immobilization in polyacrylamide gel (PAG), has been examined as a means to increase the catalase activity of PAG-immobilized yeast cells. Prior permeabilization of the cells resulted in large losses of catalase activity during immobilization, but permeabilization after immobilization produced increases in the catalase activity of yeast/PAG particles. A dependence of the accessible catalase activity on the concentration of polyacrylamide in permeabilized yeast/PAG particles, and on the method of permeabilization of the immobilized cells, was observed. Optimal levels of stable catalase activity (1000-2000 IU/g PAG particles; ca. 5%-10% of total available activity) were obtained by immobilizing yeast cells (0.5 g wet cells/mL gel) in 10% (w/v) PAG, followed by permeabilization of the entrapped cells with either cetyltrimethylammonium bromide, Triton X-100 and one freeze-thaw, or five freeze-thaw cycles. (c) 1992 John Wiley & Sons, Inc.  相似文献   

15.
Recombinant plasmids were constructed that direct the synthesis of human antithrombin III in baker's yeast, Saccharomyces cerevisiae, and the fission yeast, Schizosaccharomyces pombe. The signal sequence of antithrombin III was recognized by both yeast species, and antithrombin III was secreted into the medium. When the signal sequence was replaced by a sequence of ten arbitrary amino acids, the product expressed from such a construct stayed inside the cell. Antithrombin III was glycosylated by the baker's and fission yeast and was immunologically identical to antithrombin III isolated from human plasma. Antithrombin III isolated from the culture media of recombinant yeasts was biologically active, as could be shown by progressive inhibitor activity and heparin cofactor activity.  相似文献   

16.
The effects of broth pH, pressure, temperature, and fermentation medium on specific cake resistance were studied for dead-end microfiltration of Bacillus subtilis. Decreases in pH and transmembrane pressure decreased the specific cake resistance for cells grown in both complex and defined media. With the complex medium, the reduction in resistance with temperature decrease did not offset the flux decrease caused by the increase in viscosity. The greatest decrease in specific cake resistance occurred with adjustment of pH to 7.5 for cells grown in defined medium. For those cells the change in pH resulted in aggregation leading to a large increase in flux.  相似文献   

17.
Filtration of ethanol fermentation medium and broth by using symmetric and asymmetric ceramic membranes has been studied in an internal filter bioreactor. Factors studied included membrane structure and pore size, medium sterilization, and concentrations of glucose, yeast extract in the medium, yeast cell and protein in broth. The aim was to determine the main factors responsible for the decline in filtration performance during ethanol fermentation by Saccharomyces cerevisiae. Flux index (Fi) of a new concept has been developed to evaluate the degree of flux decline during the membrane fouling process. Fi was defined as the ratio of the membrane flux at certain filtration time (t?=?t) to the initial (t?=??0) flux of pure water, not the initial (t?=?+0) flux of the test fluid. Flux with sterilized medium was approximately two-fold higher than that with unsterilized medium although the reason could not be explained clearly. Glucose, interaction between glucose and yeast extract, yeast cells, and proteins in fermentation broth were found to play an important part in membrane fouling. Fi of the symmetric membrane decreased to a less extent than that of the asymmetric membrane with increasing glucose concentration. But, the result with various yeast cell concentrations turned out to be contrary. Fouling was more serious for asymmetric membrane during the filtration of fermentation supernatant. This was thought to be due to different fouling mechanisms for the two types of membrane.  相似文献   

18.
From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein).  相似文献   

19.
1. The effect of aeration on the key enzymes of gluconeogenesis was studied in baker's yeast (Saccharomyces cerevisiae) and in a nonrespiratory variant of S. cerevisiae grown under glucose limitation. 2. In baker's yeast phosphoenolpyruvate carboxykinase, hexosediphophatase and isocitrate lyase were completely repressed under anaerobic conditions. Their repression could be partially reversed by using intense aeration. 3. In the nonrespiratory variant these enzymes were absent independently of aeration. 4. Pyruvate carboxylase of baker's yeast showed maximal activity under anaerobic conditions. In the nonrespiratory variant pyruvate carboxylase had low activity under both anaerobic and aerobic conditions.  相似文献   

20.
From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号